YouTube Transcript Server logo

YouTube Transcript Server

by kimtaeyoon83

This is a Model Context Protocol server that enables retrieval of transcripts from YouTube videos. It provides direct access to video captions and subtitles through a simple interface.

View on GitHub

Last updated: N/A

What is YouTube Transcript Server?

The YouTube Transcript Server is an MCP server designed to extract and provide transcripts from YouTube videos. It allows users to retrieve captions and subtitles in various languages using a simple API.

How to use YouTube Transcript Server?

The server can be installed via Smithery or mcp-get. After installation, configure it with Claude Desktop. Use the get_transcript tool with a YouTube video URL or ID and an optional language code to retrieve the transcript. Example usage: await server.callTool("get_transcript", { url: "https://www.youtube.com/watch?v=VIDEO_ID", lang: "en" });

Key features of YouTube Transcript Server

  • Support for multiple video URL formats

  • Language-specific transcript retrieval

  • Detailed metadata in responses

  • Robust error handling

Use cases of YouTube Transcript Server

  • Extracting subtitles for language learning

  • Generating text summaries of YouTube videos

  • Analyzing video content for research purposes

  • Integrating video transcripts into AI applications

FAQ from YouTube Transcript Server

What is the default language for transcript retrieval?

The default language is English ('en').

How do I specify a different language for the transcript?

Use the lang parameter in the get_transcript tool, e.g., lang: 'ko' for Korean.

What happens if the transcript is not available in the specified language?

The server implements error handling for unavailable transcripts and will return an appropriate error message.

Can I use a video ID instead of a full URL?

Yes, you can provide just the video ID as the url parameter.

What kind of error handling does the server implement?

The server handles invalid video URLs, unavailable transcripts, language availability issues, and network errors.