Llama MCP Streamlit logo

Llama MCP Streamlit

by nikunj2003

This project is an interactive AI assistant built with Streamlit, NVIDIA NIM's API/Ollama, and Model Control Protocol (MCP). It provides a conversational interface where you can interact with an LLM to execute real-time external tools via MCP, retrieve data, and perform actions seamlessly.

View on GitHub

Last updated: N/A

Llama MCP Streamlit

This project is an interactive AI assistant built with Streamlit, NVIDIA NIM's API (LLaMa 3.3:70b)/Ollama, and Model Control Protocol (MCP). It provides a conversational interface where you can interact with an LLM to execute real-time external tools via MCP, retrieve data, and perform actions seamlessly.

The assistant supports:

  • Custom model selection (NVIDIA NIM / Ollama)
  • API configuration for different backends
  • Tool integration via MCP to enhance usability and real-time data processing
  • A user-friendly chat-based experience with Streamlit

šŸ“ø Screenshots

Homepage Screenshot

Homepage Screenshot

Tools Screenshot

Tools Screenshot

Chat Screenshot

Chat Screenshot

Chat (What can you do?) Screenshot

Chat (What can you do?) Screenshot

šŸ“ Project Structure

llama_mcp_streamlit/
│── ui/
│   ā”œā”€ā”€ sidebar.py       # UI components for Streamlit sidebar
│   ā”œā”€ā”€ chat_ui.py       # Chat interface components
│── utils/
│   ā”œā”€ā”€ agent.py         # Handles interaction with LLM and tools
│   ā”œā”€ā”€ mcp_client.py    # MCP client for connecting to external tools
│   ā”œā”€ā”€ mcp_server.py    # Configuration for MCP server selection
│── config.py            # Configuration settings
│── main.py              # Entry point for the Streamlit app
.env                      # Environment variables
Dockerfile                # Docker configuration
pyproject.toml            # Poetry dependency management

šŸ”§ Environment Variables

Before running the project, configure the .env file with your API keys:

# Endpoint for the NVIDIA Integrate API
API_ENDPOINT=https://integrate.api.nvidia.com/v1
API_KEY=your_api_key_here

# Endpoint for the Ollama API
API_ENDPOINT=http://localhost:11434/v1/
API_KEY=ollama

šŸš€ Running the Project

Using Poetry

  1. Install dependencies:
    poetry install
    
  2. Run the Streamlit app:
    poetry run streamlit run llama_mcp_streamlit/main.py
    

Using Docker

  1. Build the Docker image:
    docker build -t llama-mcp-assistant .
    
  2. Run the container:
    docker compose up
    

šŸ”„ Changing MCP Server Configuration

To modify which MCP server to use, update the utils/mcp_server.py file. You can use either NPX or Docker as the MCP server:

NPX Server

server_params = StdioServerParameters(
    command="npx",
    args=[
        "-y",
        "@modelcontextprotocol/server-filesystem",
        "/Users/username/Desktop",
        "/path/to/other/allowed/dir"
    ],
    env=None,
)

Docker Server

server_params = StdioServerParameters(
    command="docker",
    args=[
        "run",
        "-i",
        "--rm",
        "--mount", "type=bind,src=/Users/username/Desktop,dst=/projects/Desktop",
        "--mount", "type=bind,src=/path/to/other/allowed/dir,dst=/projects/other/allowed/dir,ro",
        "--mount", "type=bind,src=/path/to/file.txt,dst=/projects/path/to/file.txt",
        "mcp/filesystem",
        "/projects"
    ],
    env=None,
)

Modify the server_params configuration as needed to fit your setup.


šŸ“Œ Features

  • Real-time tool execution via MCP
  • LLM-powered chat interface
  • Streamlit UI with interactive chat elements
  • Support for multiple LLM backends (NVIDIA NIM & Ollama)
  • Docker support for easy deployment

šŸ›  Dependencies

  • Python 3.11+
  • Streamlit
  • OpenAI API (for NVIDIA NIM integration)
  • MCP (Model Control Protocol)
  • Poetry (for dependency management)
  • Docker (optional, for containerized deployment)

šŸ“œ License

This project is licensed under the MIT License.


šŸ¤ Contributing

Feel free to submit pull requests or report issues!


šŸ“¬ Contact

For any questions, reach out via GitHub Issues.