MCP Image Recognition Server
by mario-andreschak
This is an MCP server that provides image recognition capabilities by leveraging Anthropic and OpenAI vision APIs. It supports multiple image formats and offers configurable provider options.
View on GitHub
Last updated: N/A
MCP Image Recognition Server
An MCP server that provides image recognition capabilities using Anthropic and OpenAI vision APIs. Version 0.1.2.
Features
- Image description using Anthropic Claude Vision or OpenAI GPT-4 Vision
- Support for multiple image formats (JPEG, PNG, GIF, WebP)
- Configurable primary and fallback providers
- Base64 and file-based image input support
- Optional text extraction using Tesseract OCR
Requirements
- Python 3.8 or higher
- Tesseract OCR (optional) - Required for text extraction feature
- Windows: Download and install from UB-Mannheim/tesseract
- Linux:
sudo apt-get install tesseract-ocr
- macOS:
brew install tesseract
Installation
- Clone the repository:
git clone https://github.com/mario-andreschak/mcp-image-recognition.git
cd mcp-image-recognition
- Create and configure your environment file:
cp .env.example .env
# Edit .env with your API keys and preferences
- Build the project:
build.bat
Usage
Running the Server
Spawn the server using python:
python -m image_recognition_server.server
Start the server using batch instead:
run.bat server
Start the server in development mode with the MCP Inspector:
run.bat debug
Available Tools
-
describe_image
- Input: Base64-encoded image data and MIME type
- Output: Detailed description of the image
-
describe_image_from_file
- Input: Path to an image file
- Output: Detailed description of the image
Environment Configuration
ANTHROPIC_API_KEY
: Your Anthropic API key.OPENAI_API_KEY
: Your OpenAI API key.VISION_PROVIDER
: Primary vision provider (anthropic
oropenai
).FALLBACK_PROVIDER
: Optional fallback provider.LOG_LEVEL
: Logging level (DEBUG, INFO, WARNING, ERROR).ENABLE_OCR
: Enable Tesseract OCR text extraction (true
orfalse
).TESSERACT_CMD
: Optional custom path to Tesseract executable.OPENAI_MODEL
: OpenAI Model (default:gpt-4o-mini
). Can use OpenRouter format for other models (e.g.,anthropic/claude-3.5-sonnet:beta
).OPENAI_BASE_URL
: Optional custom base URL for the OpenAI API. Set tohttps://openrouter.ai/api/v1
for OpenRouter.OPENAI_TIMEOUT
: Optional custom timeout (in seconds) for the OpenAI API.
Using OpenRouter
OpenRouter allows you to access various models using the OpenAI API format. To use OpenRouter, follow these steps:
- Obtain an OpenAI API key from OpenRouter.
- Set
OPENAI_API_KEY
in your.env
file to your OpenRouter API key. - Set
OPENAI_BASE_URL
tohttps://openrouter.ai/api/v1
. - Set
OPENAI_MODEL
to the desired model using the OpenRouter format (e.g.,anthropic/claude-3.5-sonnet:beta
). - Set
VISION_PROVIDER
toopenai
.
Default Models
- Anthropic:
claude-3.5-sonnet-beta
- OpenAI:
gpt-4o-mini
- OpenRouter: Use the
anthropic/claude-3.5-sonnet:beta
format inOPENAI_MODEL
.
Development
Running Tests
Run all tests:
run.bat test
Run specific test suite:
run.bat test server
run.bat test anthropic
run.bat test openai
Docker Support
Build the Docker image:
docker build -t mcp-image-recognition .
Run the container:
docker run -it --env-file .env mcp-image-recognition
License
MIT License - see LICENSE file for details.
Release History
- 0.1.2 (2025-02-20): Improved OCR error handling and added comprehensive test coverage for OCR functionality
- 0.1.1 (2025-02-19): Added Tesseract OCR support for text extraction from images (optional feature)
- 0.1.0 (2025-02-19): Initial release with Anthropic and OpenAI vision support