Useful Model Context Protocol Servers (MCPS) logo

Useful Model Context Protocol Servers (MCPS)

by daltonnyx

A collection of standalone Python scripts that implement Model Context Protocol (MCP) servers for various utility functions. Each server provides specialized tools that can be used by AI assistants or other applications that support the MCP protocol.

View on GitHub

Last updated: N/A

Useful Model Context Protocol Servers (MCPS)

A collection of standalone Python scripts that implement Model Context Protocol (MCP) servers for various utility functions. Each server provides specialized tools that can be used by AI assistants or other applications that support the MCP protocol.

What is MCP?

The Model Context Protocol (MCP) is a standardized way for AI assistants to interact with external tools and services. It allows AI models to extend their capabilities by calling specialized functions provided by MCP servers. Communication happens via standard input/output (stdio) using JSON messages.

Available Servers

Each MCP server is designed to be run using a Python environment manager like uv.

YouTube Data Extractor (ytdlp/ytdlp_mcp.py)

A server that extracts information from YouTube videos using yt-dlp.

Tools:

  • Extract Chapters: Get chapter information from a YouTube video.
  • Extract Subtitles: Get subtitles from a YouTube video for specific chapters or the entire video.

MCP Server Configuration:

"mcpServers": {
  "ytdlp": {
    "name": "youtube", // Optional friendly name for the client
    "command": "uv",
    "args": [
      "run",
      "--directory", "<path/to/repo>/useful-mcps/ytdlp", // Path to the MCP directory containing pyproject.toml
      "--", // Separator before script arguments, if any
      "ytdlp_mcp" // Match the script name defined in pyproject.toml [project.scripts]
    ]
    // 'cwd' is not needed when using --directory
  }
}

Word Document Processor (docx_replace/docx_replace_mcp.py)

A server for manipulating Word documents, including template processing and PDF conversion.

Tools:

  • Process Template: Replace placeholders in Word templates and manage content blocks.
  • Get Template Keys: Extract all replacement keys from a Word document template.
  • Convert to PDF: Convert a Word document (docx) to PDF format.

MCP Server Configuration:

"mcpServers": {
  "docx_replace": {
    "name": "docx", // Optional friendly name
    "command": "uv",
    "args": [
      "run",
      "--directory", "<path/to/repo>/useful-mcps/docx_replace", // Path to the MCP directory
      "--",
      "docx_replace_mcp" // Match the script name defined in pyproject.toml
    ]
  }
}

PlantUML Renderer (plantuml/src/plantuml_server/main.py)

A server for rendering PlantUML diagrams using a PlantUML server (often run via Docker).

Tools:

  • Render Diagram: Convert PlantUML text to diagram images (e.g., PNG).

MCP Server Configuration:

"mcpServers": {
  "plantuml": {
    "name": "plantuml", // Optional friendly name
    "command": "uv",
    "args": [
      "run",
      "--directory", "<path/to/repo>/useful-mcps/plantuml", // Path to the MCP directory
      "--",
      "plantuml_server" // Match the script name defined in pyproject.toml
    ]
  }
}

(Note: Requires a running PlantUML server accessible, potentially managed via Docker as implemented in the service).

Mermaid Renderer (mermaid/mermaid_mcp.py)

A server for rendering Mermaid diagrams using the mermaidchart.com API.

Tools:

  • Render Mermaid Chart: Convert Mermaid code into a PNG image by creating a document on mermaidchart.com.

MCP Server Configuration:

"mcpServers": {
  "mermaid": {
    "name": "mermaid", // Optional friendly name
    "command": "uv",
    "args": [
      "run",
      "--directory", "<path/to/repo>/useful-mcps/mermaid", // Path to the MCP directory
      "--",
      "mermaid_mcp" // Match the script name defined in pyproject.toml
    ],
    "env": { // Environment variables needed by the MCP
        "MERMAID_CHART_ACCESS_TOKEN": "YOUR_API_TOKEN_HERE"
    }
  }
}

(Note: Requires a Mermaid Chart API access token set as an environment variable).

Installation

  1. Clone the repository:

    git clone https://github.com/daltonnyx/useful-mcps.git # Replace with the actual repo URL if different
    cd useful-mcps
    
  2. Install uv: If you don't have uv, install it:

    pip install uv
    # or follow instructions at https://github.com/astral-sh/uv
    
  3. Dependencies: Dependencies are managed per-MCP via pyproject.toml. uv run will typically handle installing them automatically in a virtual environment when you run an MCP for the first time using --directory.

Usage

Running a Server

It's recommended to run each MCP server using uv run --directory <path> pointing to the specific MCP's directory. uv handles the virtual environment and dependencies based on the pyproject.toml found there.

Example (from the root useful-mcps directory):

# Run the YouTube MCP
uv run --directory ./ytdlp ytdlp_mcp

# Run the Mermaid MCP (ensure token is set in environment)
uv run --directory ./mermaid mermaid_mcp

Alternatively, configure your MCP client (like the example JSON configurations above) to execute the uv run --directory ... command directly.

Connecting to a Server

Configure your MCP client application to launch the desired server using the command and args structure shown in the "MCP Server Configuration" examples for each server. Ensure the command points to your uv executable and the args correctly specify --directory with the path to the MCP's folder and the script name to run. Pass necessary environment variables (like API tokens) using the env property.

Tool-Specific Usage Examples

These show example arguments you would send to the call_tool function of the respective MCP server.

YouTube Data Extractor

Extract Chapters
{
  "url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
}
Extract Subtitles
{
  "url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
  "language": "en",
  "chapters": [
    {
      "title": "Introduction",
      "start_time": "00:00:00",
      "end_time": "00:01:30"
    }
  ]
}

Word Document Processor

Process Template
{
  "template_file": "/path/to/template.docx",
  "replacements": {
    "name": "John Doe",
    "date": "2023-05-15"
  },
  "blocks": {
    "optional_section": true,
    "alternative_section": false
  },
  "output_filename": "/path/to/output.docx"
}

(Note: template_file and docx_file can also accept base64 encoded strings instead of paths)

Get Template Keys
{
  "template_file": "/path/to/template.docx"
}
Convert to PDF
{
  "docx_file": "/path/to/document.docx",
  "pdf_output": "/path/to/output.pdf"
}

PlantUML Renderer

Render Diagram
{
  "input": "participant User\nUser -> Server: Request\nServer --> User: Response",
  "output_path": "/path/to/save/diagram.png"
}

(Note: input can also be a path to a .puml file)

Mermaid Renderer

Render Mermaid Chart
{
  "mermaid_code": "graph TD;\n    A-->B;\n    A-->C;\n    B-->D;\n    C-->D;",
  "output_path": "/path/to/save/mermaid.png",
  "theme": "default" // Optional, e.g., "default", "dark", "neutral", "forest"
}

Development

Adding a New MCP Server

  1. Create a new directory for your MCP (e.g., my_new_mcp).
  2. Inside the directory, create:
    • pyproject.toml: Define project metadata, dependencies, and the script entry point (e.g., [project.scripts] section mapping my_new_mcp = "my_new_mcp:main").
    • pyrightconfig.json: (Optional) For type checking.
    • Your main Python file (e.g., my_new_mcp.py): Implement the MCP logic using the mcp library (see template below).
  3. Implement the required classes and functions (serve, list_tools, call_tool).

Basic template (my_new_mcp.py):

import json
import logging
import asyncio
from typing import List, Dict, Any, Optional
# Assuming mcp library is installed or available
# from mcp import Server, Tool, TextContent, stdio_server
# Placeholder imports if mcp library structure is different
from typing import Protocol # Using Protocol as placeholder

# Placeholder definitions if mcp library isn't directly importable here
class Tool(Protocol):
    name: str
    description: str
    inputSchema: dict

class TextContent(Protocol):
    type: str
    text: str

class Server:
    def __init__(self, name: str): pass
    def list_tools(self): pass # Decorator
    def call_tool(self): pass # Decorator
    def create_initialization_options(self): pass
    async def run(self, read_stream, write_stream, options): pass

# Placeholder context manager
class stdio_server:
    async def __aenter__(self): return (None, None) # Dummy streams
    async def __aexit__(self, exc_type, exc, tb): pass


# Pydantic is often used for schema definition
# from pydantic import BaseModel
# class MyInput(BaseModel):
#     param1: str
#     param2: int

class MyInputSchema: # Placeholder if not using Pydantic
    @staticmethod
    def model_json_schema():
      return {"type": "object", "properties": {"param1": {"type": "string"}, "param2": {"type": "integer"}}, "required": ["param1", "param2"]}


class MyTools:
    TOOL_NAME = "my.tool"

class MyService:
    def __init__(self):
        # Initialize resources if needed
        pass

    def my_function(self, param1: str, param2: int) -> dict:
        # Implement your tool functionality
        logging.info(f"Running my_function with {param1=}, {param2=}")
        # Replace with actual logic
        result_content = f"Result: processed {param1} and {param2}"
        return {"content": result_content}

async def serve() -> None:
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
    server = Server("mcp-my-service")
    service = MyService()

    @server.list_tools()
    async def list_tools() -> list[Tool]:
        logging.info("list_tools called")
        return [
            Tool(
                name=MyTools.TOOL_NAME,
                description="Description of my tool",
                # Use Pydantic's schema or manually define
                inputSchema=MyInputSchema.model_json_schema(),
            ),
        ]

    @server.call_tool()
    async def call_tool(name: str, arguments: dict) -> list[TextContent]:
        logging.info(f"call_tool called with {name=}, {arguments=}")
        try:
            if name == MyTools.TOOL_NAME:
                # Add validation here if not using Pydantic
                param1 = arguments.get("param1")
                param2 = arguments.get("param2")
                if param1 is None or param2 is None:
                     raise ValueError("Missing required arguments")

                result = service.my_function(param1, int(param2)) # Ensure type conversion if needed
                logging.info(f"Tool executed successfully: {result=}")
                return [TextContent(type="text", text=json.dumps(result))] # Return JSON string
            else:
                logging.warning(f"Unknown tool requested: {name}")
                raise ValueError(f"Unknown tool: {name}")
        except Exception as e:
            logging.error(f"Error executing tool {name}: {e}", exc_info=True)
            # Return error as JSON
            error_payload = json.dumps({"error": str(e)})
            return [TextContent(type="text", text=error_payload)]

    options = server.create_initialization_options()
    logging.info("Starting MCP server...")
    async with stdio_server() as (read_stream, write_stream):
        await server.run(read_stream, write_stream, options)
    logging.info("MCP server stopped.")

def main():
    # Entry point defined in pyproject.toml `[project.scripts]`
    try:
        asyncio.run(serve())
    except KeyboardInterrupt:
        logging.info("Server interrupted by user.")

if __name__ == "__main__":
    # Allows running directly via `python my_new_mcp.py` for debugging
    main()

Testing

Run tests using pytest from the root directory:

pytest tests/

(Ensure test dependencies are installed, potentially via uv pip install pytest or by adding pytest to the dev dependencies in one of the pyproject.toml files).

License

MIT License

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.