Patronus MCP Server logo

Patronus MCP Server

by patronus-ai

The Patronus MCP Server provides a standardized interface for running powerful LLM system optimizations, evaluations, and experiments using the Patronus SDK. It allows users to easily evaluate, experiment, and optimize their LLM systems.

View on GitHub

Last updated: N/A

Patronus MCP Server

An MCP server implementation for the Patronus SDK, providing a standardized interface for running powerful LLM system optimizations, evaluations, and experiments.

Features

  • Initialize Patronus with API key and project settings
  • Run single evaluations with configurable evaluators
  • Run batch evaluations with multiple evaluators
  • Run experiments with datasets

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/patronus-mcp-server.git
cd patronus-mcp-server
  1. Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
  1. Install main and dev dependencies:
uv pip install -e .
uv pip install -e ".[dev]"

Usage

Running the Server

The server can be run with an API key provided in two ways:

  1. Command line argument:
python src/patronus_mcp/server.py --api-key your_api_key_here
  1. Environment variable:
export PATRONUS_API_KEY=your_api_key_here
python src/patronus_mcp/server.py

Interactive Testing

The test script (tests/test_live.py) provides an interactive way to test different evaluation endpoints. You can run it in several ways:

  1. With API key in command line:
python -m tests.test_live src/patronus_mcp/server.py --api-key your_api_key_here
  1. With API key in environment:
export PATRONUS_API_KEY=your_api_key_here
python -m tests.test_live src/patronus_mcp/server.py
  1. Without API key (will prompt):
python -m tests.test_live src/patronus_mcp/server.py

The test script provides three test options:

  1. Single evaluation test
  2. Batch evaluation test

Each test will display the results in a nicely formatted JSON output.

API Usage

Initialize
from patronus_mcp.server import mcp, Request, InitRequest

request = Request(data=InitRequest(
    project_name="MyProject",
    api_key="your-api-key",
    app="my-app"
))
response = await mcp.call_tool("initialize", {"request": request.model_dump()})
Single Evaluation
from patronus_mcp.server import Request, EvaluationRequest, RemoteEvaluatorConfig

request = Request(data=EvaluationRequest(
    evaluator=RemoteEvaluatorConfig(
        name="lynx",
        criteria="patronus:hallucination",
        explain_strategy="always"
    ),
    task_input="What is the capital of France?",
    task_output="Paris is the capital of France."
    task_context=["The capital of France is Paris."],
))
response = await mcp.call_tool("evaluate", {"request": request.model_dump()})
Batch Evaluation
from patronus_mcp.server import Request, BatchEvaluationRequest, RemoteEvaluatorConfig

request = Request(data=BatchEvaluationRequest(
    evaluators=[
        AsyncRemoteEvaluatorConfig(
            name="lynx",
            criteria="patronus:hallucination",
            explain_strategy="always"
        ),
        AsyncRemoteEvaluatorConfig(
            name="judge",
            criteria="patronus:is-concise",
            explain_strategy="always"
        )
    ],
    task_input="What is the capital of France?",
    task_output="Paris is the capital of France."
    task_context=["The capital of France is Paris."],
))
response = await mcp.call_tool("batch_evaluate", {"request": request.model_dump()})
Run Experiment
from patronus_mcp import Request, ExperimentRequest, RemoteEvaluatorConfig, CustomEvaluatorConfig

# Create a custom evaluator function
@evaluator()
def exact_match(expected: str, actual: str, case_sensitive: bool = False) -> bool:
    if not case_sensitive:
        return expected.lower() == actual.lower()
    return expected == actual

# Create a custom adapter class
class ExactMatchAdapter(FuncEvaluatorAdapter):
    def __init__(self, case_sensitive: bool = False):
        super().__init__(exact_match)
        self.case_sensitive = case_sensitive

    def transform(self, row, task_result, parent, **kwargs):
        args = []
        evaluator_kwargs = {
            "expected": row.gold_answer,
            "actual": task_result.output if task_result else "",
            "case_sensitive": self.case_sensitive
        }
        return args, evaluator_kwargs

# Create experiment request
request = Request(data=ExperimentRequest(
    project_name="my_project",
    experiment_name="my_experiment",
    dataset=[{
        "input": "What is 2+2?",
        "output": "4",
        "gold_answer": "4"
    }],
    evaluators=[
        # Remote evaluator
        RemoteEvaluatorConfig(
            name="judge",
            criteria="patronus:is-concise"
        ),
        # Custom evaluator
        CustomEvaluatorConfig(
            adapter_class="my_module.ExactMatchAdapter",
            adapter_kwargs={"case_sensitive": False}
        )
    ]
))

# Run the experiment
response = await mcp.call_tool("run_experiment", {"request": request.model_dump()})
response_data = json.loads(response[0].text)

# The experiment runs asynchronously, so results will be pending initially
assert response_data["status"] == "success"
assert "results" in response_data
assert isinstance(response_data["results"], str)  # Results will be a string (pending)
List Evaluator Info

Get a comprehensive view of all available evaluators and their associated criteria:

# No request body needed
response = await mcp.call_tool("list_evaluator_info", {})

# Response structure:
{
    "status": "success",
    "result": {
        "evaluator_family_name": {
            "evaluator": {
                # evaluator configuration and metadata
            },
            "criteria": [
                # list of available criteria for this evaluator
            ]
        }
    }
}

This endpoint combines information about evaluators and their associated criteria into a single, organized response. The results are grouped by evaluator family, with each family containing its evaluator configuration and a list of available criteria.

Create Criteria

Creates a new evaluator criteria in the Patronus API.

{
    "request": {
        "data": {
            "name": "my-criteria",
            "evaluator_family": "Judge",
            "config": {
                "pass_criteria": "The MODEL_OUTPUT should contain all the details needed from RETRIEVED CONTEXT to answer USER INPUT.",
                "active_learning_enabled": false,
                "active_learning_negative_samples": null,
                "active_learning_positive_samples": null
            }
        }
    }
}

Parameters:

  • name (str): Unique name for the criteria
  • evaluator_family (str): Family of the evaluator (e.g., "Judge", "Answer Relevance")
  • config (dict): Configuration for the criteria
    • pass_criteria (str): The criteria that must be met for a pass
    • active_learning_enabled (bool, optional): Whether active learning is enabled
    • active_learning_negative_samples (int, optional): Number of negative samples for active learning
    • active_learning_positive_samples (int, optional): Number of positive samples for active learning

Returns:

{
    "status": "success",
    "result": {
        "name": "my-criteria",
        "evaluator_family": "Judge",
        "config": {
            "pass_criteria": "The MODEL_OUTPUT should contain all the details needed from RETRIEVED CONTEXT to answer USER INPUT.",
            "active_learning_enabled": False,
            "active_learning_negative_samples": null,
            "active_learning_positive_samples": null
        }
    }
}
Custom Evaluate

Evaluates a task output using a custom evaluator function decorated with @evaluator.

{
    "request": {
        "data": {
            "task_input": "What is the capital of France?",
            "task_context": ["The capital of France is Paris."],
            "task_output": "Paris is the capital of France.",
            "evaluator_function": "is_concise",
            "evaluator_args": {
                "threshold": 0.7
            }
        }
    }
}

Parameters:

  • task_input (str): The input prompt
  • task_context (List[str], optional): Context information for the evaluation
  • task_output (str): The output to evaluate
  • evaluator_function (str): Name of the evaluator function to use (must be decorated with @evaluator)
  • evaluator_args (Dict[str, Any], optional): Additional arguments for the evaluator function

The evaluator function can return:

  • bool: Simple pass/fail result
  • int or float: Numeric score (pass threshold is 0.7)
  • str: Text output
  • EvaluationResult: Full evaluation result with score, pass status, explanation, etc.

Returns:

{
    "status": "success",
    "result": {
        "score": 0.8,
        "pass_": true,
        "text_output": "Good match",
        "explanation": "Output matches context well",
        "metadata": {
            "context_length": 1
        },
        "tags": ["high_score"]
    }
}

Example evaluator function:

from patronus import evaluator, EvaluationResult

@evaluator
def is_concise(output: str) -> bool:
    """Simple evaluator that checks if the output is concise"""
    return len(output.split()) < 10

@evaluator
def has_score(output: str, context: List[str]) -> EvaluationResult:
    """Evaluator that returns a score based on context"""
    return EvaluationResult(
        score=0.8,
        pass_=True,
        text_output="Good match",
        explanation="Output matches context well",
        metadata={"context_length": len(context)},
        tags=["high_score"]
    )

Development

Project Structure

patronus-mcp-server/
├── src/
│   └── patronus_mcp/
│       ├── __init__.py
│       └── server.py
├── tests/
│   └── test_server.py
    └── test_live.py
├── pyproject.toml
└── README.md

Adding New Features

  1. Define new request models in server.py:

    class NewFeatureRequest(BaseModel):
        # Define your request fields here
        field1: str
        field2: Optional[int] = None
    
  2. Implement new tool functions with the @mcp.tool() decorator:

    @mcp.tool()
    def new_feature(request: Request[NewFeatureRequest]):
        # Implement your feature logic here
        return {"status": "success", "result": ...}
    
  3. Add corresponding tests:

    • Add API tests in test_server.py:
      def test_new_feature():
          request = Request(data=NewFeatureRequest(
              field1="test",
              field2=123
          ))
          response = mcp.call_tool("new_feature", {"request": request.model_dump()})
          assert response["status"] == "success"
      
    • Add interactive test in test_live.py:
      async def test_new_feature(self):
          request = Request(data=NewFeatureRequest(
              field1="test",
              field2=123
          ))
          result = await self.session.call_tool("new_feature", {"request": request.model_dump()})
          await self._handle_response(result, "New feature test")
      
    • Add the new test to the test selection menu in main()
  4. Update the README with:

    • New feature description in the Features section
    • API usage example in the API Usage section
    • Any new configuration options or requirements

Running Tests

The test script uses the Model Context Protocol (MCP) client to communicate with the server. It supports:

  • Interactive test selection
  • JSON response formatting
  • Proper resource cleanup
  • Multiple API key input methods

You can also run the standard test suite:

pytest tests/

Running the Server

python -m src.patronus_mcp.server

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request