Open Source MCP Client Library logo

Open Source MCP Client Library

by pietrozullo

MCP-Use is an open-source library that connects any LLM to any MCP server, enabling the creation of custom agents with tool access. It allows developers to easily integrate LLMs with tools like web browsing and file operations.

View on GitHub

Last updated: N/A

<picture> <img alt="" src="./static/image.jpg" width="full"> </picture> <h1 align="center">Open Source MCP Client Library </h1>

PyPI Downloads

PyPI Downloads

PyPI Version

PyPI Version

Python Versions

Python Versions

Documentation

Documentation

License

License

Code style: Ruff

Code style: Ruff

GitHub stars

GitHub stars

🌐 MCP-Use is the open source way to connect any LLM to any MCP server and build custom agents that have tool access, without using closed source or application clients.

💡 Let developers easily connect any LLM to tools like web browsing, file operations, and more.

Features

✨ Key Features

| Feature | Description | |---------|-------------| | 🔄 Ease of use | Create your first MCP capable agent you need only 6 lines of code | | 🤖 LLM Flexibility | Works with any langchain supported LLM that supports tool calling (OpenAI, Anthropic, Groq, LLama etc.) | | 🌐 HTTP Support | Direct connection to MCP servers running on specific HTTP ports | | 🧩 Multi-Server Support | Use multiple MCP servers simultaneously in a single agent | | 🛡️ Tool Restrictions | Restrict potentially dangerous tools like file system or network access |

Quick start

With pip:

pip install mcp-use

Or install from source:

git clone https://github.com/pietrozullo/mcp-use.git
cd mcp-use
pip install -e .

Installing LangChain Providers

mcp_use works with various LLM providers through LangChain. You'll need to install the appropriate LangChain provider package for your chosen LLM. For example:

# For OpenAI
pip install langchain-openai

# For Anthropic
pip install langchain-anthropic

# For other providers, check the [LangChain chat models documentation](https://python.langchain.com/docs/integrations/chat/)

and add your API keys for the provider you want to use to your .env file.

OPENAI_API_KEY=
ANTHROPIC_API_KEY=

Important: Only models with tool calling capabilities can be used with mcp_use. Make sure your chosen model supports function calling or tool use.

Spin up your agent:

import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
    # Load environment variables
    load_dotenv()

    # Create configuration dictionary
    config = {
      "mcpServers": {
        "playwright": {
          "command": "npx",
          "args": ["@playwright/mcp@latest"],
          "env": {
            "DISPLAY": ":1"
          }
        }
      }
    }

    # Create MCPClient from configuration dictionary
    client = MCPClient.from_dict(config)

    # Create LLM
    llm = ChatOpenAI(model="gpt-4o")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    # Run the query
    result = await agent.run(
        "Find the best restaurant in San Francisco",
    )
    print(f"\nResult: {result}")

if __name__ == "__main__":
    asyncio.run(main())

You can also add the servers configuration from a config file like this:

client = MCPClient.from_config_file(
        os.path.join("browser_mcp.json")
    )

Example configuration file (browser_mcp.json):

{
  "mcpServers": {
    "playwright": {
      "command": "npx",
      "args": ["@playwright/mcp@latest"],
      "env": {
        "DISPLAY": ":1"
      }
    }
  }
}

For other settings, models, and more, check out the documentation.

Example Use Cases

Web Browsing with Playwright

import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
    # Load environment variables
    load_dotenv()

    # Create MCPClient from config file
    client = MCPClient.from_config_file(
        os.path.join(os.path.dirname(__file__), "browser_mcp.json")
    )

    # Create LLM
    llm = ChatOpenAI(model="gpt-4o")
    # Alternative models:
    # llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
    # llm = ChatGroq(model="llama3-8b-8192")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    # Run the query
    result = await agent.run(
        "Find the best restaurant in San Francisco USING GOOGLE SEARCH",
        max_steps=30,
    )
    print(f"\nResult: {result}")

if __name__ == "__main__":
    asyncio.run(main())

Airbnb Search

import asyncio
import os
from dotenv import load_dotenv
from langchain_anthropic import ChatAnthropic
from mcp_use import MCPAgent, MCPClient

async def run_airbnb_example():
    # Load environment variables
    load_dotenv()

    # Create MCPClient with Airbnb configuration
    client = MCPClient.from_config_file(
        os.path.join(os.path.dirname(__file__), "airbnb_mcp.json")
    )

    # Create LLM - you can choose between different models
    llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    try:
        # Run a query to search for accommodations
        result = await agent.run(
            "Find me a nice place to stay in Barcelona for 2 adults "
            "for a week in August. I prefer places with a pool and "
            "good reviews. Show me the top 3 options.",
            max_steps=30,
        )
        print(f"\nResult: {result}")
    finally:
        # Ensure we clean up resources properly
        if client.sessions:
            await client.close_all_sessions()

if __name__ == "__main__":
    asyncio.run(run_airbnb_example())

Example configuration file (airbnb_mcp.json):

{
  "mcpServers": {
    "airbnb": {
      "command": "npx",
      "args": ["-y", "@openbnb/mcp-server-airbnb"]
    }
  }
}

Blender 3D Creation

import asyncio
from dotenv import load_dotenv
from langchain_anthropic import ChatAnthropic
from mcp_use import MCPAgent, MCPClient

async def run_blender_example():
    # Load environment variables
    load_dotenv()

    # Create MCPClient with Blender MCP configuration
    config = {"mcpServers": {"blender": {"command": "uvx", "args": ["blender-mcp"]}}}
    client = MCPClient.from_dict(config)

    # Create LLM
    llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    try:
        # Run the query
        result = await agent.run(
            "Create an inflatable cube with soft material and a plane as ground.",
            max_steps=30,
        )
        print(f"\nResult: {result}")
    finally:
        # Ensure we clean up resources properly
        if client.sessions:
            await client.close_all_sessions()

if __name__ == "__main__":
    asyncio.run(run_blender_example())

Configuration File Support

MCP-Use supports initialization from configuration files, making it easy to manage and switch between different MCP server setups:

import asyncio
from mcp_use import create_session_from_config

async def main():
    # Create an MCP session from a config file
    session = create_session_from_config("mcp-config.json")

    # Initialize the session
    await session.initialize()

    # Use the session...

    # Disconnect when done
    await session.disconnect()

if __name__ == "__main__":
    asyncio.run(main())

HTTP Connection Example

MCP-Use now supports HTTP connections, allowing you to connect to MCP servers running on specific HTTP ports. This feature is particularly useful for integrating with web-based MCP servers.

Here's an example of how to use the HTTP connection feature:

import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
    """Run the example using a configuration file."""
    # Load environment variables
    load_dotenv()

    config = {
        "mcpServers": {
            "http": {
                "url": "http://localhost:8931/sse"
            }
        }
    }

    # Create MCPClient from config file
    client = MCPClient.from_dict(config)

    # Create LLM
    llm = ChatOpenAI(model="gpt-4o")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    # Run the query
    result = await agent.run(
        "Find the best restaurant in San Francisco USING GOOGLE SEARCH",
        max_steps=30,
    )
    print(f"\nResult: {result}")

if __name__ == "__main__":
    # Run the appropriate example
    asyncio.run(main())

This example demonstrates how to connect to an MCP server running on a specific HTTP port. Make sure to start your MCP server before running this example.

Multi-Server Support

MCP-Use supports working with multiple MCP servers simultaneously, allowing you to combine tools from different servers in a single agent. This is useful for complex tasks that require multiple capabilities, such as web browsing combined with file operations or 3D modeling.

Configuration

You can configure multiple servers in your configuration file:

{
  "mcpServers": {
    "airbnb": {
      "command": "npx",
      "args": ["-y", "@openbnb/mcp-server-airbnb", "--ignore-robots-txt"]
    },
    "playwright": {
      "command": "npx",
      "args": ["@playwright/mcp@latest"],
      "env": {
        "DISPLAY": ":1"
      }
    }
  }
}

Usage

The MCPClient class provides several methods for managing multiple servers:

import asyncio
from mcp_use import MCPClient, MCPAgent
from langchain_anthropic import ChatAnthropic

async def main():
    # Create client with multiple servers
    client = MCPClient.from_config_file("multi_server_config.json")

    # Create agent with the client
    agent = MCPAgent(
        llm=ChatAnthropic(model="claude-3-5-sonnet-20240620"),
        client=client
    )

    try:
        # Run a query that uses tools from multiple servers
        result = await agent.run(
            "Search for a nice place to stay in Barcelona on Airbnb, "
            "then use Google to find nearby restaurants and attractions."
        )
        print(result)
    finally:
        # Clean up all sessions
        await client.close_all_sessions()

if __name__ == "__main__":
    asyncio.run(main())

Tool Access Control

MCP-Use allows you to restrict which tools are available to the agent, providing better security and control over agent capabilities:

import asyncio
from mcp_use import MCPAgent, MCPClient
from langchain_openai import ChatOpenAI

async def main():
    # Create client
    client = MCPClient.from_config_file("config.json")

    # Create agent with restricted tools
    agent = MCPAgent(
        llm=ChatOpenAI(model="gpt-4"),
        client=client,
        disallowed_tools=["file_system", "network"]  # Restrict potentially dangerous tools
    )

    # Run a query with restricted tool access
    result = await agent.run(
        "Find the best restaurant in San Francisco"
    )
    print(result)

    # Clean up
    await client.close_all_sessions()

if __name__ == "__main__":
    asyncio.run(main())

Roadmap

<ul> <li>[x] Multiple Servers at once </li> <li>[x] Test remote connectors (http, ws)</li> <li>[ ] ... </li> </ul>

Contributing

We love contributions! Feel free to open issues for bugs or feature requests.

Requirements

  • Python 3.11+
  • MCP implementation (like Playwright MCP)
  • LangChain and appropriate model libraries (OpenAI, Anthropic, etc.)

Citation

If you use MCP-Use in your research or project, please cite:

@software{mcp_use2025,
  author = {Zullo, Pietro},
  title = {MCP-Use: MCP Library for Python},
  year = {2025},
  publisher = {GitHub},
  url = {https://github.com/pietrozullo/mcp-use}
}

License

MIT