Grok MCP Plugin
by Bob-lance
The Grok MCP Plugin provides seamless access to Grok AI's capabilities directly from Cline. It exposes tools for chat completion, image understanding, and function calling.
Last updated: N/A
Grok MCP Plugin
A Model Context Protocol (MCP) plugin that provides seamless access to Grok AI's powerful capabilities directly from Cline.
Features
This plugin exposes three powerful tools through the MCP interface:
- Chat Completion - Generate text responses using Grok's language models
- Image Understanding - Analyze images with Grok's vision capabilities
- Function Calling - Use Grok to call functions based on user input
Prerequisites
- Node.js (v16 or higher)
- A Grok AI API key (obtain from console.x.ai)
- Cline with MCP support
Installation
-
Clone this repository:
git clone https://github.com/Bob-lance/grok-mcp.git cd grok-mcp
-
Install dependencies:
npm install
-
Build the project:
npm run build
-
Add the MCP server to your Cline MCP settings:
For VSCode Cline extension, edit the file at:
~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
Add the following configuration:
{ "mcpServers": { "grok-mcp": { "command": "node", "args": ["/path/to/grok-mcp/build/index.js"], "env": { "XAI_API_KEY": "your-grok-api-key" }, "disabled": false, "autoApprove": [] } } }
Replace
/path/to/grok-mcp
with the actual path to your installation andyour-grok-api-key
with your Grok AI API key.
Usage
Once installed and configured, the Grok MCP plugin provides three tools that can be used in Cline:
Chat Completion
Generate text responses using Grok's language models:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>chat_completion</tool_name>
<arguments>
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello, what can you tell me about Grok AI?"
}
],
"temperature": 0.7
}
</arguments>
</use_mcp_tool>
Image Understanding
Analyze images with Grok's vision capabilities:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
"image_url": "https://example.com/image.jpg",
"prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
You can also use base64-encoded images:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
"base64_image": "base64-encoded-image-data",
"prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
Function Calling
Use Grok to call functions based on user input:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>function_calling</tool_name>
<arguments>
{
"messages": [
{
"role": "user",
"content": "What's the weather like in San Francisco?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature to use"
}
},
"required": ["location"]
}
}
}
]
}
</arguments>
</use_mcp_tool>
API Reference
Chat Completion
Generate a response using Grok AI chat completion.
Parameters:
messages
(required): Array of message objects with role and contentmodel
(optional): Grok model to use (defaults to grok-2-latest)temperature
(optional): Sampling temperature (0-2, defaults to 1)max_tokens
(optional): Maximum number of tokens to generate (defaults to 16384)
Image Understanding
Analyze images using Grok AI vision capabilities.
Parameters:
prompt
(required): Text prompt to accompany the imageimage_url
(optional): URL of the image to analyzebase64_image
(optional): Base64-encoded image data (without the data:image prefix)model
(optional): Grok vision model to use (defaults to grok-2-vision-latest)
Note: Either image_url
or base64_image
must be provided.
Function Calling
Use Grok AI to call functions based on user input.
Parameters:
messages
(required): Array of message objects with role and contenttools
(required): Array of tool objects with type, function name, description, and parameterstool_choice
(optional): Tool choice mode (auto, required, none, defaults to auto)model
(optional): Grok model to use (defaults to grok-2-latest)
Development
Project Structure
src/index.ts
- Main server implementationsrc/grok-api-client.ts
- Grok API client implementation
Building
npm run build
Running
XAI_API_KEY="your-grok-api-key" node build/index.js
License
This project is licensed under the MIT License - see the LICENSE file for details.