MS SQL Server MCP Server logo

MS SQL Server MCP Server

by TerraCo89

This project provides an MCP server for interacting with MS SQL Server databases via AI assistants using the Model Context Protocol (MCP). It uses a secure profile management system leveraging the system's native credential store to avoid sending passwords over MCP.

View on GitHub

Last updated: N/A

MS SQL Server MCP Server

This project provides an MCP server for interacting with MS SQL Server databases via AI assistants using the Model Context Protocol (MCP).

It uses a secure profile management system leveraging the system's native credential store (via the keyring library) to avoid sending passwords over MCP.

Prerequisites

For Direct Python Execution:

  • Python 3.10+
  • Pip (Python package installer)
  • ODBC Driver for SQL Server installed on the machine running the server.
  • keyring library dependencies might require system packages (e.g., dbus-launch, gnome-keyring or kwallet on Linux, see keyring documentation for details).

For Docker Execution:

  • Docker installed and running.
  • The Dockerfile is configured to use the keyrings.cryptfile backend for secure password storage within the container's filesystem. This requires mounting a volume for persistence.

Installation

Option 1: Direct Python Execution

  1. Clone the repository (if applicable):
    git clone <repository_url>
    cd mcp-server-mssql
    
  2. Create and activate a Python virtual environment:
    python -m venv venv
    # Activate (Windows PowerShell): .\venv\Scripts\Activate.ps1
    # Activate (macOS/Linux): source venv/bin/activate
    
  3. Install dependencies:
    pip install -r requirements.txt
    

Option 2: Docker Execution

  1. Clone the repository (if applicable).
  2. Build the Docker image:
    docker build -t mcp-mssql-server .
    
    (Note: The Dockerfile includes ODBC driver installation and configures the keyrings.cryptfile backend.)

Configuration: Profile Management

This server uses connection profiles to manage database credentials securely.

  1. Profiles File (profiles.json): Stores non-sensitive details (driver, server, database, username) locally in the server's directory. This file is created automatically if it doesn't exist. Ensure this file is added to your .gitignore.
  2. System Keyring: Passwords are stored securely in your operating system's credential manager (like Windows Credential Manager, macOS Keychain) using the keyring library under the service name mcp-mssql-server.
  3. Adding Profiles: Use the add_connection_profile tool. When first adding a profile, you will be prompted in the terminal where the server is running to securely enter the password. This password is never sent via MCP.
  4. Managing Profiles: Use list_connection_profiles and remove_connection_profile tools.

Usage

Option 1: Direct Python Execution (Stdio)

  1. Activate the virtual environment.
  2. Configure in MCP Client Settings (e.g., mcp_settings.json):
    {
      "mcpServers": {
        // ... other servers ...
        "mssql": {
          "command": "python", // Or full path to venv python
          "args": ["D:/path/to/your/mcp-server-mssql/server.py"],
          "cwd": "D:/path/to/your/mcp-server-mssql",
          "alwaysAllow": [
            "add_connection_profile",
            "list_connection_profiles",
            "remove_connection_profile",
            "read_table_rows",
            "create_table_records",
            "update_table_records",
            "delete_table_records",
            "get_table_schema",
            "list_tables"
          ]
        }
        // ... other servers ...
      }
    }
    
    Adjust paths accordingly.
  3. Restart your MCP Client/IDE Extension. Add profiles using the add_connection_profile tool (requires console interaction for password).

Option 2: Docker Execution (Stdio)

  1. Ensure the Docker image mcp-mssql-server is built.
  2. Configure in MCP Client Settings:
    {
      "mcpServers": {
        // ... other servers ...
        "mssql-docker": {
          "command": "docker",
          "args": [
            "run", "-i", "--rm",
            "--env-file", "./mcp-server-mssql/.env_docker", // Example: Store KEYRING_CRYPTFILE_PASSWORD here
            "-v", "mssql_keyring_data:/keyring_data", // Mount volume for keyring data
            "mcp-mssql-server"
          ],
          "alwaysAllow": [
            "add_connection_profile", // Note: Password prompt will appear in container logs
            "list_connection_profiles",
            "remove_connection_profile",
            "read_table_rows",
            "create_table_records",
            "update_table_records",
            "delete_table_records",
            "get_table_schema",
            "list_tables"
          ]
        }
        // ... other servers ...
      }
    }
    
  3. Restart your MCP Client/IDE Extension.
  4. Important:
    • The Dockerfile is configured to use the keyrings.cryptfile backend. You MUST provide a strong password for encrypting the keyring file via the KEYRING_CRYPTFILE_PASSWORD environment variable when running the container. It is highly recommended to use a .env file (like the example .env_docker in the args) or Docker secrets, rather than passing the password directly on the command line.
    • A Docker volume (e.g., mssql_keyring_data in the example) MUST be mounted to /keyring_data inside the container to persist the encrypted keyring file (keyring_pass.cfg) and the profiles.json file across container restarts.
    • The add_connection_profile password prompt will still appear in the container's logs/terminal.

Available Tools

Profile Management:

  • add_connection_profile(profile_name: str, driver: str, server: str, database: str, username: str)
  • list_connection_profiles()
  • remove_connection_profile(profile_name: str)

Database Operations (Requires profile_name):

  • read_table_rows(profile_name: str, table_name: str, ...)
  • create_table_records(profile_name: str, table_name: str, records: List[Dict])
  • update_table_records(profile_name: str, table_name: str, updates: Dict, filters: Dict)
  • delete_table_records(profile_name: str, table_name: str, filters: Dict)
  • get_table_schema(profile_name: str, table_name: str)
  • list_tables(profile_name: str, schema: Optional[str] = None)

Refer to the docstrings within server.py for detailed argument descriptions.

Example Tool Usage (Conceptual)

  1. Add a profile (requires console interaction on server): "Using the mssql server, call add_connection_profile with name SalesDB_UK, driver {ODBC Driver 17 for SQL Server}, server myserver.example.com, database SalesDB, username report_user." (Then enter password in server console).
  2. Use the profile: "Using the mssql server, call read_table_rows using profile SalesDB_UK for the table Customers. Filter where Country is 'UK'."

The AI assistant would construct the second call like:

// Conceptual MCP Tool Call
{
  "tool_name": "read_table_rows",
  "arguments": {
    "profile_name": "SalesDB_UK",
    "table_name": "Customers",
    "filters": {
      "Country": "UK"
    }
  }
}