BigQuery MCP Server
by takuya0206
A Model Context Protocol (MCP) server for accessing Google BigQuery. This server enables Large Language Models (LLMs) to understand BigQuery dataset structures and execute SQL queries.
Last updated: N/A
BigQuery MCP Server
A Model Context Protocol (MCP) server for accessing Google BigQuery. This server enables Large Language Models (LLMs) to understand BigQuery dataset structures and execute SQL queries.
Features
Authentication and Connection Management
- Supports Application Default Credentials (ADC) or service account key files
- Configurable project ID and location settings
- Authentication verification on startup
Tools
-
query
- Execute read-only (SELECT) BigQuery SQL queries
- Configurable maximum results and bytes billed
- Security checks to prevent non-SELECT queries
-
list_all_datasets
- List all datasets in the project
- Returns an array of dataset IDs
-
list_all_tables_with_dataset
- List all tables in a specific dataset with their schemas
- Requires a datasetId parameter
- Returns table IDs, schemas, time partitioning information, and descriptions
-
get_table_information
- Get table schema and sample data (up to 20 rows)
- Support for partitioned tables with partition filters
- Warnings for queries on partitioned tables without filters
-
dry_run_query
- Check query validity and estimate cost without execution
- Returns processing size and estimated cost
Security Features
- Only SELECT queries are allowed (read-only access)
- Default limit of 500GB for query processing to prevent excessive costs
- Partition filter recommendations for partitioned tables
- Secure handling of authentication credentials
Installation
Local Installation
# Clone the repository
git clone https://github.com/yourusername/bigquery-mcp-server.git
cd bigquery-mcp-server
# Install dependencies
bun install
# Build the server
bun run build
# Install command to your own path.
cp dist/bigquery-mcp-server /path/to/your_place
Docker Installation
You can also run the server in a Docker container:
# Build the Docker image
docker build -t bigquery-mcp-server .
# Run the container
docker run -it --rm \
bigquery-mcp-server \
--project-id=your-project-id
Or using Docker Compose:
# Edit docker-compose.yml to set your project ID and other options
# Then run:
docker-compose up
MCP Configuration
To use this server with an MCP-enabled LLM, add it to your MCP configuration:
{
"mcpServers": {
"BigQuery": {
"command": "/path/to/dist/bigquery-mcp-server",
"args": [
"--project-id",
"your-project-id",
"--location",
"asia-northeast1",
"--max-results",
"1000",
"--max-bytes-billed",
"500000000000"
],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account-key.json"
}
}
}
}
You can also use Application Default Credentials instead of a service account key file:
{
"mcpServers": {
"BigQuery": {
"command": "/path/to/dist/bigquery-mcp-server",
"args": [
"--project-id",
"your-project-id",
"--location",
"asia-northeast1",
"--max-results",
"1000",
"--max-bytes-billed",
"500000000000"
]
}
}
}
Setting up Application Default Credentials
To authenticate using Application Default Credentials:
-
Install the Google Cloud SDK if you haven't already:
# For macOS brew install --cask google-cloud-sdk # For other platforms, see: https://cloud.google.com/sdk/docs/install
-
Run the authentication command:
gcloud auth application-default login
-
Follow the prompts to log in with your Google account that has access to the BigQuery project.
-
The credentials will be saved to your local machine and automatically used by the BigQuery MCP server.
Testing
You can use inspector for testing and debugging.
npx @modelcontextprotocol/inspector dist/bigquery-mcp-server --project-id={{your_own_project}}
Usage
Using the Helper Script
The included run-server.sh
script makes it easy to start the server with common configurations:
# Make the script executable
chmod +x run-server.sh
# Run with Application Default Credentials
./run-server.sh --project-id=your-project-id
# Run with a service account key file
./run-server.sh \
--project-id=your-project-id \
--location=asia-northeast1 \
--key-file=/path/to/service-account-key.json \
--max-results=1000 \
--max-bytes-billed=500000000000
Manual Execution
You can also run the compiled binary directly:
# Run with Application Default Credentials
./dist/bigquery-mcp-server --project-id=your-project-id
# Run with a service account key file
./dist/bigquery-mcp-server \
--project-id=your-project-id \
--location=asia-northeast1 \
--key-file=/path/to/service-account-key.json \
--max-results=1000 \
--max-bytes-billed=500000000000
Example Client
An example Node.js client is included in the examples
directory:
# Make the example executable
chmod +x examples/sample-query.js
# Edit the example to set your project ID
# Then run it
cd examples
./sample-query.js
Command Line Options
--project-id
: Google Cloud project ID (required)--location
: BigQuery location (default: asia-northeast1)--key-file
: Path to service account key file (optional)--max-results
: Maximum rows to return (default: 1000)--max-bytes-billed
: Maximum bytes to process (default: 500000000000, 500GB)
Required Permissions
The service account or user credentials should have one of the following:
roles/bigquery.user
(recommended)
Or both of these:
roles/bigquery.dataViewer
(for reading table data)roles/bigquery.jobUser
(for executing queries)
Example Usage
Query Tool
{
"query": "SELECT * FROM `project.dataset.table` LIMIT 10",
"maxResults": 100
}
List All Datasets Tool
// No parameters required
List All Tables With Dataset Tool
{
"datasetId": "your_dataset"
}
Get Table Information Tool
{
"datasetId": "your_dataset",
"tableId": "your_table",
"partition": "20250101"
}
Dry Run Query Tool
{
"query": "SELECT * FROM `project.dataset.table` WHERE date = '2025-01-01'"
}
Error Handling
The server provides detailed error messages for:
- Authentication failures
- Permission issues
- Invalid queries
- Missing partition filters
- Excessive data processing requests
Code Structure
The server is organized into the following structure:
src/
├── index.ts # Entry point
├── server.ts # BigQueryMcpServer class
├── types.ts # Type definitions
├── tools/ # Tool implementations
│ ├── query.ts # query tool
│ ├── list-datasets.ts # list_all_datasets tool
│ ├── list-tables.ts # list_all_tables_with_dataset tool
│ ├── table-info.ts # get_table_information tool
│ └── dry-run.ts # dry_run_query tool
└── utils/ # Utility functions
├── args-parser.ts # Command line argument parser
└── query-utils.ts # Query validation and response formatting
License
MIT