Dingo
by DataEval
Dingo is a data quality evaluation tool that helps you automatically detect data quality issues in your datasets. It provides a variety of built-in rules and model evaluation methods, and also supports custom evaluation methods.
Last updated: N/A
Changelog
- 2024/12/27: Project Initialization
Introduction
Dingo is a data quality evaluation tool that helps you automatically detect data quality issues in your datasets. Dingo provides a variety of built-in rules and model evaluation methods, and also supports custom evaluation methods. Dingo supports commonly used text datasets and multimodal datasets, including pre-training datasets, fine-tuning datasets, and evaluation datasets. In addition, Dingo supports multiple usage methods, including local CLI and SDK, making it easy to integrate into various evaluation platforms, such as OpenCompass.
Architecture Diagram

Architecture of dingo
Quick Start
Installation
pip install dingo-python
Example Use Cases
1. Using Evaluate Core
from dingo.config.config import DynamicLLMConfig
from dingo.io.input.MetaData import MetaData
from dingo.model.llm.llm_text_quality_model_base import LLMTextQualityModelBase
from dingo.model.rule.rule_common import RuleEnterAndSpace
def llm():
data = MetaData(
data_id='123',
prompt="hello, introduce the world",
content="Hello! The world is a vast and diverse place, full of wonders, cultures, and incredible natural beauty."
)
LLMTextQualityModelBase.dynamic_config = DynamicLLMConfig(
key='',
api_url='',
# model='',
)
res = LLMTextQualityModelBase.eval(data)
print(res)
def rule():
data = MetaData(
data_id='123',
prompt="hello, introduce the world",
content="Hello! The world is a vast and diverse place, full of wonders, cultures, and incredible natural beauty."
)
res = RuleEnterAndSpace().eval(data)
print(res)
2. Evaluate Local Text File (Plaintext)
from dingo.io import InputArgs
from dingo.exec import Executor
# Evaluate a plaintext file
input_data = {
"eval_group": "sft", # Rule set for SFT data
"input_path": "data.txt", # Path to local text file
"dataset": "local",
"data_format": "plaintext", # Format: plaintext
"save_data": True # Save evaluation results
}
input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)
3. Evaluate Hugging Face Dataset
from dingo.io import InputArgs
from dingo.exec import Executor
# Evaluate a dataset from Hugging Face
input_data = {
"eval_group": "sft", # Rule set for SFT data
"input_path": "tatsu-lab/alpaca", # Dataset from Hugging Face
"data_format": "plaintext", # Format: plaintext
"save_data": True # Save evaluation results
}
input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)
4. Evaluate JSON/JSONL Format
from dingo.io import InputArgs
from dingo.exec import Executor
# Evaluate a JSON file
input_data = {
"eval_group": "default", # Default rule set
"input_path": "data.json", # Path to local JSON file
"dataset": "local",
"data_format": "json", # Format: json
"column_content": "text", # Column containing the text to evaluate
"save_data": True # Save evaluation results
}
input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)
5. Using LLM for Evaluation
from dingo.io import InputArgs
from dingo.exec import Executor
# Evaluate using GPT model
input_data = {
"input_path": "data.jsonl", # Path to local JSONL file
"dataset": "local",
"data_format": "jsonl",
"column_content": "content",
"custom_config": {
"prompt_list": ["PromptRepeat"], # Prompt to use
"llm_config": {
"detect_text_quality": {
"model": "gpt-4o",
"key": "YOUR_API_KEY",
"api_url": "https://api.openai.com/v1/chat/completions"
}
}
}
}
input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)
Command Line Interface
Evaluate with Rule Sets
python -m dingo.run.cli --input_path data.txt --dataset local -e sft --data_format plaintext --save_data True
Evaluate with LLM (e.g., GPT-4o)
python -m dingo.run.cli --input_path data.json --dataset local -e openai --data_format json --column_content text --custom_config config_gpt.json --save_data True
Example config_gpt.json
:
{
"llm_config": {
"openai": {
"model": "gpt-4o",
"key": "YOUR_API_KEY",
"api_url": "https://api.openai.com/v1/chat/completions"
}
}
}
GUI Visualization
After evaluation (with save_data=True
), a frontend page will be automatically generated. To manually start the frontend:
python -m dingo.run.vsl --input output_directory
Where output_directory
contains the evaluation results with a summary.json
file.

GUI output
Online Demo
Try Dingo on our online demo: (Hugging Face)🤗
Data Quality Metrics
Dingo classifies data quality issues into 7 dimensions of Quality Metrics. Each dimension can be evaluated using both rule-based methods and LLM-based prompts:
| Quality Metric | Description | Rule Examples | LLM Prompt Examples |
|-------------------|-------------|---------------|---------------------|
| COMPLETENESS | Checks if data is incomplete or missing | RuleColonEnd
, RuleContentNull
| Evaluates if text abruptly ends with a colon or ellipsis, has mismatched parentheses, or missing critical components |
| EFFECTIVENESS | Checks if data is meaningful and properly formatted | RuleAbnormalChar
, RuleHtmlEntity
, RuleSpecialCharacter
| Detects garbled text, words stuck together without spaces, and text lacking proper punctuation |
| FLUENCY | Checks if text is grammatically correct and reads naturally | RuleAbnormalNumber
, RuleNoPunc
, RuleWordStuck
| Identifies excessively long words, text fragments without punctuation, or content with chaotic reading order |
| RELEVANCE | Detects irrelevant content within the data | RuleHeadWord
variants for different languages | Examines for irrelevant information like citation details, headers/footers, entity markers, HTML tags |
| SECURITY | Identifies sensitive information or value conflicts | RuleIDCard
, RuleUnsafeWords
| Checks for personal information, and content related to gambling, pornography, political issues |
| SIMILARITY | Detects repetitive or highly similar content | RuleDocRepeat
| Evaluates text for consecutive repeated content or multiple occurrences of special characters |
| UNDERSTANDABILITY | Assesses how easily data can be interpreted | RuleCapitalWords
| Ensures LaTeX formulas and Markdown are correctly formatted, with proper segmentation and line breaks |
LLM Quality Assessment
Dingo provides several LLM-based assessment methods defined by prompts in the dingo/model/prompt
directory. These prompts are registered using the prompt_register
decorator and can be combined with LLM models for quality evaluation:
Text Quality Assessment Prompts
| Prompt Type | Metric | Description |
|-------------|--------|-------------|
| TEXT_QUALITY_V2
, TEXT_QUALITY_V3
| Various quality dimensions | Comprehensive text quality evaluation covering effectiveness, relevance, completeness, understandability, similarity, fluency, and security |
| QUALITY_BAD_EFFECTIVENESS
| Effectiveness | Detects garbled text and anti-crawling content |
| QUALITY_BAD_SIMILARITY
| Similarity | Identifies text repetition issues |
| WORD_STICK
| Fluency | Checks for words stuck together without proper spacing |
| CODE_LIST_ISSUE
| Completeness | Evaluates code blocks and list formatting issues |
| UNREAD_ISSUE
| Effectiveness | Detects unreadable characters due to encoding issues |
3H Assessment Prompts (Honest, Helpful, Harmless)
| Prompt Type | Metric | Description |
|-------------|--------|-------------|
| QUALITY_HONEST
| Honesty | Evaluates if responses provide accurate information without fabrication or deception |
| QUALITY_HELPFUL
| Helpfulness | Assesses if responses address questions directly and follow instructions appropriately |
| QUALITY_HARMLESS
| Harmlessness | Checks if responses avoid harmful content, discriminatory language, and dangerous assistance |
Domain-Specific Assessment Prompts
| Prompt Type | Metric | Description |
|-------------|--------|-------------|
| TEXT_QUALITY_KAOTI
| Exam question quality | Specialized assessment for evaluating the quality of exam questions, focusing on formula rendering, table formatting, paragraph structure, and answer formatting |
| Html_Abstract
| HTML extraction quality | Compares different methods of extracting Markdown from HTML, evaluating completeness, formatting accuracy, and semantic coherence |
| DATAMAN_ASSESSMENT
| Data Quality & Domain | Evaluates pre-training data quality using the DataMan methodology (14 standards, 15 domains). Assigns a score (0/1), domain type, quality status, and reason. |
Classification Prompts
| Prompt Type | Metric | Description |
|-------------|--------|-------------|
| CLASSIFY_TOPIC
| Topic Categorization | Classifies text into categories like language processing, writing, code, mathematics, role-play, or knowledge Q&A |
| CLASSIFY_QR
| Image Classification | Identifies images as CAPTCHA, QR code, or normal images |
Image Assessment Prompts
| Prompt Type | Metric | Description |
|-------------|--------|-------------|
| IMAGE_RELEVANCE
| Image Relevance | Evaluates if an image matches reference image in terms of face count, feature details, and visual elements |
Using LLM Assessment in Evaluation
To use these assessment prompts in your evaluations, specify them in your configuration:
input_data = {
# Other parameters...
"custom_config": {
"prompt_list": ["QUALITY_BAD_SIMILARITY"], # Specific prompt to use
"llm_config": {
"detect_text_quality": { # LLM model to use
"model": "gpt-4o",
"key": "YOUR_API_KEY",
"api_url": "https://api.openai.com/v1/chat/completions"
}
}
}
}
You can customize these prompts to focus on specific quality dimensions or to adapt to particular domain requirements. When combined with appropriate LLM models, these prompts enable comprehensive evaluation of data quality across multiple dimensions.
Rule Groups
Dingo provides pre-configured rule groups for different types of datasets:
| Group | Use Case | Example Rules |
|-------|----------|---------------|
| default
| General text quality | RuleColonEnd
, RuleContentNull
, RuleDocRepeat
, etc. |
| sft
| Fine-tuning datasets | Rules from default
plus RuleLineStartWithBulletpoint
|
| pretrain
| Pre-training datasets | Comprehensive set of 20+ rules including RuleAlphaWords
, RuleCapitalWords
, etc. |
To use a specific rule group:
input_data = {
"eval_group": "sft", # Use "default", "sft", or "pretrain"
# other parameters...
}
Feature Highlights
Multi-source & Multi-modal Support
- Data Sources: Local files, Hugging Face datasets, S3 storage
- Data Types: Pre-training, fine-tuning, and evaluation datasets
- Data Modalities: Text and image
Rule-based & Model-based Evaluation
- Built-in Rules: 20+ general heuristic evaluation rules
- LLM Integration: OpenAI, Kimi, and local models (e.g., Llama3)
- Custom Rules: Easily extend with your own rules and models
- Security Evaluation: Perspective API integration
Flexible Usage
- Interfaces: CLI and SDK options
- Integration: Easy integration with other platforms
- Execution Engines: Local and Spark
Comprehensive Reporting
- Quality Metrics: 7-dimensional quality assessment
- Traceability: Detailed reports for anomaly tracking
User Guide
Custom Rules, Prompts, and Models
If the built-in rules don't meet your requirements, you can create custom ones:
Custom Rule Example
from dingo.model import Model
from dingo.model.rule.base import BaseRule
from dingo.config.config import DynamicRuleConfig
from dingo.io import MetaData
from dingo.model.modelres import ModelRes
@Model.rule_register('QUALITY_BAD_RELEVANCE', ['default'])
class MyCustomRule(BaseRule):
"""Check for custom pattern in text"""
dynamic_config = DynamicRuleConfig(pattern=r'your_pattern_here')
@classmethod
def eval(cls, input_data: MetaData) -> ModelRes:
res = ModelRes()
# Your rule implementation here
return res
Custom LLM Integration
from dingo.model import Model
from dingo.model.llm.base_openai import BaseOpenAI
@Model.llm_register('my_custom_model')
class MyCustomModel(BaseOpenAI):
# Custom implementation here
pass
See more examples in:
Execution Engines
Local Execution
from dingo.io import InputArgs
from dingo.exec import Executor
input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
# Get results
summary = executor.get_summary() # Overall evaluation summary
bad_data = executor.get_bad_info_list() # List of problematic data
good_data = executor.get_good_info_list() # List of high-quality data
Spark Execution
from dingo.io import InputArgs
from dingo.exec import Executor
from pyspark.sql import SparkSession
# Initialize Spark
spark = SparkSession.builder.appName("Dingo").getOrCreate()
spark_rdd = spark.sparkContext.parallelize([...]) # Your data as MetaData objects
input_args = InputArgs(eval_group="default", save_data=True)
executor = Executor.exec_map["spark"](input_args, spark_session=spark, spark_rdd=spark_rdd)
result = executor.execute()
Evaluation Reports
After evaluation, Dingo generates:
- Summary Report (
summary.json
): Overall metrics and scores - Detailed Reports: Specific issues for each rule violation
Example summary:
{
"task_id": "d6c922ec-981c-11ef-b723-7c10c9512fac",
"task_name": "dingo",
"eval_group": "default",
"input_path": "test/data/test_local_jsonl.jsonl",
"output_path": "outputs/d6c921ac-981c-11ef-b723-7c10c9512fac",
"create_time": "20241101_144510",
"score": 50.0,
"num_good": 1,
"num_bad": 1,
"total": 2,
"type_ratio": {
"QUALITY_BAD_COMPLETENESS": 0.5,
"QUALITY_BAD_RELEVANCE": 0.5
},
"name_ratio": {
"QUALITY_BAD_COMPLETENESS-RuleColonEnd": 0.5,
"QUALITY_BAD_RELEVANCE-RuleSpecialCharacter": 0.5
}
}
MCP Server (Experimental)
Dingo includes an experimental Model Context Protocol (MCP) server. For details on running the server and integrating it with clients like Cursor, please see the dedicated documentation:
Dingo MCP Server Documentation (README_mcp.md)
Research & Publications
- "Comprehensive Data Quality Assessment for Multilingual WebData" : WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages
- "Pre-training data quality using the DataMan methodology" : DataMan: Data Manager for Pre-training Large Language Models
Future Plans
- [ ] Richer graphic and text evaluation indicators
- [ ] Audio and video data modality evaluation
- [ ] Small model evaluation (fasttext, Qurating)
- [ ] Data diversity evaluation
Limitations
The current built-in detection rules and model methods focus on common data quality problems. For specialized evaluation needs, we recommend customizing detection rules.
Acknowledgments
Contribution
We appreciate all the contributors for their efforts to improve and enhance Dingo
. Please refer to the Contribution Guide for guidance on contributing to the project.
License
This project uses the Apache 2.0 Open Source License.
Citation
If you find this project useful, please consider citing our tool:
@misc{dingo,
title={Dingo: A Comprehensive Data Quality Evaluation Tool for Large Models},
author={Dingo Contributors},
howpublished={\url{https://github.com/DataEval/dingo}},
year={2024}
}