Kubernetes MCP Server
by ductnn
A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters. It combines both kubectl commands and the Kubernetes Python client.
View on GitHub
Last updated: N/A
Kubernetes MCP Server
A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters, combining both kubectl commands and Kubernetes Python client.
https://github.com/user-attachments/assets/48e061cd-3e85-40ff-ab04-a1a2b9bbd152
โจ Features
- Natural Language Interface: Convert plain English queries to kubectl commands
- List pods and deployments across all namespaces
- Fallback to general resource listing for unsupported queries
- Full CRUD Operations:
- ๐ Create/Delete namespaces, pods, and deployments via API endpoints
- ๐ Inspect cluster resources
- โ๏ธ Modify labels, annotations, and deployment configurations
- ๐๏ธ Graceful deletion
- ๐ Scale deployments
- Dual Execution Mode:
kubectl
command integration- Kubernetes Python client (official SDK)
- Advanced Capabilities:
- Namespace validation (DNS-1123 compliant)
- Label filtering
- Grace period control
- Automatic command fallback
- Resource management (CPU, memory)
- Environment variable configuration
๐ฆ Installation
Prerequisites
- Python 3.11+
- Kubernetes cluster access
kubectl
configured locally- UV installed
# Clone repository
git clone https://github.com/ductnn/mcp-kubernetes-server.git
cd mcp-kubernetes-server
# Create virtual environment
uv venv .venv
# Activate (Unix)
source .venv/bin/activate
# Install dependencies
uv pip install -r requirements.txt
๐ Usage
Natural Language Processing
The server supports basic natural language queries for listing resources:
# List all pods
result = nl_processor.process("Show me all pods")
# List all deployments
result = nl_processor.process("Show me all deployments")
# Query with namespace
result = nl_processor.process("Show me all resources", "kube-system")
For more complex operations, use the dedicated API endpoints:
# Create a pod
pod_service.create_pod(
name="my-pod",
namespace="default",
image="nginx:latest",
labels={"app": "my-app"}
)
# Create a deployment
deployment_service.create_deployment(
name="my-deployment",
namespace="default",
image="nginx:latest",
replicas=3
)
# Delete a namespace
namespace_service.delete("my-namespace", force=True)
API Endpoints
The server provides RESTful endpoints for all operations:
/api/pods
- Pod operations/api/deployments
- Deployment operations/api/namespaces
- Namespace operations/api/cluster
- Cluster operations/api/nlp
- Natural language processing
๐ค Usage with AI Assistants
Claude Desktop
- Open your Claude Desktop and choose
Settings
-> choose modeDeveloper
->Edit config
and open fileclaude_desktop_config.json
and edit:
{
"mcpServers": {
"kubernetes": {
"command": "/path-to-your-uv/uv",
"args": [
"--directory",
"/path-you-project/", // Example for me /Users/ductn/mcp-kubernetes-server
"run",
"main.py"
]
}
}
}
- Then, restart your Claude Desktop and play :)
๐งช Testing
Run the test suite:
# Run all tests
pytest
# Run specific test file
pytest tests/unit/test_pod_service.py
# Run with coverage
pytest --cov=.
๐ License
This project is licensed under the MIT License - see the LICENSE file for details.