medRxiv MCP Server
by JackKuo666
The medRxiv MCP Server enables AI assistants to search and access medRxiv papers through a simple MCP interface. It provides a bridge between AI assistants and medRxiv's preprint repository through the Model Context Protocol (MCP).
Last updated: N/A
medRxiv MCP Server
🔍 Enable AI assistants to search and access medRxiv papers through a simple MCP interface.
The medRxiv MCP Server provides a bridge between AI assistants and medRxiv's preprint repository through the Model Context Protocol (MCP). It allows AI models to search for health sciences preprints and access their content in a programmatic way.
🤝 Contribute • 📝 Report Bug
✨ Core Features
- 🔎 Paper Search: Query medRxiv papers with custom search strings or advanced search parameters ✅
- 🚀 Efficient Retrieval: Fast access to paper metadata ✅
- 📊 Metadata Access: Retrieve detailed metadata for specific papers using DOI ✅
- 📊 Research Support: Facilitate health sciences research and analysis ✅
- 📄 Paper Access: Download and read paper content 📝
- 📋 Paper Listing: View all downloaded papers 📝
- 🗃️ Local Storage: Papers are saved locally for faster access 📝
- 📝 Research Prompts: A set of specialized prompts for paper analysis 📝
🚀 Quick Start
Installing via Smithery
To install medRxiv Server for Claude Desktop automatically via Smithery:
claude
npx -y @smithery/cli@latest install @JackKuo666/medrxiv-mcp-server --client claude --config "{}"
Cursor
Paste the following into Settings → Cursor Settings → MCP → Add new server:
- Mac/Linux
npx -y @smithery/cli@latest run @JackKuo666/medrxiv-mcp-server --client cursor --config "{}"
Windsurf
npx -y @smithery/cli@latest install @JackKuo666/medrxiv-mcp-server --client windsurf --config "{}"
CLine
npx -y @smithery/cli@latest install @JackKuo666/medrxiv-mcp-server --client cline --config "{}"
Installing Manually
Install using uv:
uv tool install medRxiv-mcp-server
For development:
# Clone and set up development environment
git clone https://github.com/JackKuo666/medRxiv-MCP-Server.git
cd medRxiv-MCP-Server
# Create and activate virtual environment
uv venv
source .venv/bin/activate
uv pip install -r requirements.txt
📊 Usage
Start the MCP server:
python medrxiv_server.py
Once the server is running, you can use the provided MCP tools in your AI assistant or application. Here are some examples of how to use the tools:
Example 1: Search for papers using keywords
result = await mcp.use_tool("search_medrxiv_key_words", {
"key_words": "COVID-19 vaccine efficacy",
"num_results": 5
})
print(result)
Example 2: Perform an advanced search
result = await mcp.use_tool("search_medrxiv_advanced", {
"term": "COVID-19",
"author1": "MacLachlan",
"start_date": "2020-01-01",
"end_date": "2023-12-31",
"num_results": 3
})
print(result)
Example 3: Get metadata for a specific paper
result = await mcp.use_tool("get_medrxiv_metadata", {
"doi": "10.1101/2025.03.09.25323517"
})
print(result)
These examples demonstrate how to use the three main tools provided by the medRxiv MCP Server. Adjust the parameters as needed for your specific use case.
🛠 MCP Tools
The medRxiv MCP Server provides the following tools:
search_medrxiv_key_words
Search for articles on medRxiv using key words.
Parameters:
key_words
(str): Search query stringnum_results
(int, optional): Number of results to return (default: 10)
Returns: List of dictionaries containing article information
search_medrxiv_advanced
Perform an advanced search for articles on medRxiv.
Parameters:
term
(str, optional): General search termtitle
(str, optional): Search in titleauthor1
(str, optional): First authorauthor2
(str, optional): Second authorabstract_title
(str, optional): Search in abstract and titletext_abstract_title
(str, optional): Search in full text, abstract, and titlesection
(str, optional): Section of medRxivstart_date
(str, optional): Start date for search range (format: YYYY-MM-DD)end_date
(str, optional): End date for search range (format: YYYY-MM-DD)num_results
(int, optional): Number of results to return (default: 10)
Returns: List of dictionaries containing article information
get_medrxiv_metadata
Fetch metadata for a medRxiv article using its DOI.
Parameters:
doi
(str): DOI of the article
Returns: Dictionary containing article metadata
Usage with Claude Desktop
Add this configuration to your claude_desktop_config.json
:
(Mac OS)
{
"mcpServers": {
"medrxiv": {
"command": "python",
"args": ["-m", "medrxiv-mcp-server"]
}
}
}
(Windows version):
{
"mcpServers": {
"medrxiv": {
"command": "C:\\Users\\YOUR_USERNAME\\AppData\\Local\\Programs\\Python\\Python311\\python.exe",
"args": [
"-m",
"medrxiv-mcp-server"
]
}
}
}
Using with Cline
{
"mcpServers": {
"medrxiv": {
"command": "bash",
"args": [
"-c",
"source /home/YOUR/PATH/mcp-server-medRxiv/.venv/bin/activate && python /home/YOUR/PATH/mcp-server-medRxiv/medrxiv_server.py"
],
"env": {},
"disabled": false,
"autoApprove": []
}
}
}
After restarting Claude Desktop, the following capabilities will be available:
Searching Papers
You can ask Claude to search for papers using queries like:
Can you search medRxiv for recent papers about genomics?
The search will return basic information about matching papers including:
• Paper title
• Authors
• DOI
Getting Paper Details
Once you have a DOI, you can ask for more details:
Can you show me the details for paper 10.1101/003541?
This will return:
• Full paper title
• Authors
• Publication date
• Paper abstract
• Links to available formats (PDF/HTML)
📝 TODO
download_paper
Download a paper and save it locally.
read_paper
Read the content of a downloaded paper.
list_papers
List all downloaded papers.
📝 Research Prompts
The server offers specialized prompts to help analyze academic papers:
Paper Analysis Prompt
A comprehensive workflow for analyzing academic papers that only requires a paper ID:
result = await call_prompt("deep-paper-analysis", {
"paper_id": "2401.12345"
})
This prompt includes:
- Detailed instructions for using available tools (list_papers, download_paper, read_paper, search_papers)
- A systematic workflow for paper analysis
- Comprehensive analysis structure covering:
- Executive summary
- Research context
- Methodology analysis
- Results evaluation
- Practical and theoretical implications
- Future research directions
- Broader impacts
📁 Project Structure
medrxiv_server.py
: The main MCP server implementation using FastMCPmedrxiv_web_search.py
: Contains the web scraping logic for searching medRxiv
🔧 Dependencies
- Python 3.10+
- FastMCP
- asyncio
- logging
- requests (for web scraping, used in medrxiv_web_search.py)
- beautifulsoup4 (for web scraping, used in medrxiv_web_search.py)
You can install the required dependencies using:
pip install FastMCP requests beautifulsoup4
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📄 License
This project is licensed under the MIT License.
🙏 Acknowledgements
This project is inspired by and built upon the work done in the arxiv-mcp-server project.
⚠️ Disclaimer
This tool is for research purposes only. Please respect medRxiv's terms of service and use this tool responsibly.