Tribal
by agentience
Tribal is an MCP server implementation for error knowledge tracking and retrieval. It provides both REST API and native MCP interfaces for integration with tools like Claude Code and Cline.
Last updated: N/A
Tribal - Knowledge Service
Tribal is an MCP (Model Context Protocol) server implementation for error knowledge tracking and retrieval. It provides both REST API and native MCP interfaces for integration with tools like Claude Code and Cline.
Features
- Store and retrieve error records with full context
- Vector similarity search using ChromaDB
- REST API (FastAPI) and native MCP interfaces
- JWT authentication with API keys
- Local storage (ChromaDB) and AWS integration
- Docker-compose deployment
- CLI client integration
Overview
Tribal helps Claude remember and learn from programming errors. When you start a Claude Code session, Tribal is automatically available through MCP without additional imports.
Claude will:
- Store programming errors and solutions
- Search for similar errors when you encounter problems
- Build a knowledge base specific to your coding patterns
Packaging and Installing Tribal with uv
Prerequisites
- Python 3.12+
- uv package manager (recommended)
Build and Install Steps
Option 1: Direct installation with uv
The simplest approach is to install directly from the current directory:
# From the project root directory
cd /path/to/tribal
# Install using uv
uv pip install .
Option 2: Development Installation
For development work where you want changes to be immediately reflected:
# From the project root directory
cd /path/to/tribal
# Install in development mode
uv pip install -e .
Option 3: Build the package first
If you want to build a distributable package:
# Make sure you're in the project root directory
cd /path/to/tribal
# Install the build package if needed
uv pip install build
# Build the package
python -m build
# This creates distribution files in the dist/ directory
# Now install the wheel file
uv pip install dist/tribal-0.1.0-py3-none-any.whl
Option 4: Using the uv tool install
command
You can also use the tool installation approach:
# Install as a global tool
cd /path/to/tribal
uv tool install .
# Or install in development mode
uv tool install -e .
Verification
After installation, verify that the tool is properly installed:
# Check the installation
which tribal
# Check the version
tribal version
Integration with Claude
After installation, you can integrate with Claude:
# Add Tribal to Claude Code
claude mcp add tribal --launch "tribal"
# Verify the configuration
claude mcp list
# For Docker container
claude mcp add tribal http://localhost:5000
Usage
Available MCP Tools
Tribal provides these MCP tools:
add_error
- Create new error record (POST /errors)get_error
- Retrieve error by UUID (GET /errors/{id})update_error
- Modify existing error (PUT /errors/{id})delete_error
- Remove error record (DELETE /errors/{id})search_errors
- Find errors by criteria (GET /errors)find_similar
- Semantic similarity search (GET /errors/similar)get_token
- Obtain JWT token (POST /token)
Example Usage with Claude
When Claude encounters an error:
I'll track this error and look for similar problems in our knowledge base.
When Claude finds a solution:
I've found a solution! I'll store this in our knowledge base for next time.
Commands for Claude
You can ask Claude to:
- "Look for similar errors in our Tribal knowledge base"
- "Store this solution to our error database"
- "Check if we've seen this error before"
Running the Server
Using the tribal command
# Run the server
tribal
# Get help
tribal help
# Show version
tribal version
# Run with options
tribal server --port 5000 --auto-port
Using Python modules
# Run the Tribal server
python -m mcp_server_tribal.mcp_app
# Run the FastAPI backend server
python -m mcp_server_tribal.app
Using legacy entry points
# Legacy MCP server
mcp-server
# Legacy FastAPI server
mcp-api
Command-line Options
# Development mode with auto-reload
mcp-api --reload
mcp-server --reload
# Custom port
mcp-api --port 8080
mcp-server --port 5000
# Auto port selection
mcp-api --auto-port
mcp-server --auto-port
The FastAPI server will be available at http://localhost:8000 with API documentation at /docs. The MCP server will be available at http://localhost:5000 for Claude and other MCP-compatible LLMs.
Environment Variables
FastAPI Server
PERSIST_DIRECTORY
: ChromaDB storage path (default: "./chroma_db")API_KEY
: Authentication key (default: "dev-api-key")SECRET_KEY
: JWT signing key (default: "insecure-dev-key-change-in-production")REQUIRE_AUTH
: Authentication requirement (default: "false")PORT
: Server port (default: 8000)
MCP Server
MCP_API_URL
: FastAPI server URL (default: "http://localhost:8000")MCP_PORT
: MCP server port (default: 5000)MCP_HOST
: Host to bind to (default: "0.0.0.0")API_KEY
: FastAPI access key (default: "dev-api-key")AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
,AWS_S3_BUCKET
: For AWS integration
API Endpoints
POST /errors
: Create new error recordGET /errors/{error_id}
: Get error by IDPUT /errors/{error_id}
: Update error recordDELETE /errors/{error_id}
: Delete errorGET /errors
: Search errors by criteriaGET /errors/similar
: Find similar errorsPOST /token
: Get authentication token
Using the Client
# Add a new error record
mcp-client --action add --error-type ImportError --language python --error-message "No module named 'requests'" --solution-description "Install requests" --solution-explanation "You need to install the requests package"
# Get an error by ID
mcp-client --action get --id <error-id>
# Search for errors
mcp-client --action search --error-type ImportError --language python
# Find similar errors
mcp-client --action similar --query "ModuleNotFoundError: No module named 'pandas'"
How It Works
- Tribal uses ChromaDB to store error records and solutions
- When Claude encounters an error, it sends the error details to Tribal
- Tribal vectorizes the error and searches for similar ones
- Claude gets back relevant solutions to suggest
- New solutions are stored for future reference
Development
Running Tests
pytest
pytest tests/path_to_test.py::test_name # For specific tests
Linting and Type Checking
ruff check .
mypy .
black .
GitHub Workflow
This project uses GitHub Actions for continuous integration and deployment. The workflow automatically runs tests, linting, and type checking on push to main and pull requests.
Workflow Steps
-
Test: Runs linting, type checking, and unit tests
- Uses Python 3.12
- Installs dependencies with uv
- Runs ruff, black, mypy, and pytest
-
Build and Publish: Builds and publishes the package to PyPI
- Triggered only on push to main branch
- Uses Python's build system
- Publishes to PyPI using twine
Testing Locally
You can test the GitHub workflow locally using the provided script:
# Make the script executable
chmod +x scripts/test-workflow.sh
# Run the workflow locally
./scripts/test-workflow.sh
This script simulates the GitHub workflow steps on your local machine:
- Checks Python version (3.12 recommended)
- Installs dependencies using uv
- Runs linting with ruff
- Checks formatting with black
- Runs type checking with mypy
- Runs tests with pytest
- Builds the package
Note: The script skips the publishing step for local testing.
Project Structure
tribal/
├── src/
│ ├── mcp_server_tribal/ # Core package
│ │ ├── api/ # FastAPI endpoints
│ │ ├── cli/ # Command-line interface
│ │ ├── models/ # Pydantic models
│ │ ├── services/ # Service layer
│ │ │ ├── aws/ # AWS integrations
│ │ │ └── chroma_storage.py # ChromaDB implementation
│ │ └── utils/ # Utility functions
│ └── examples/ # Example usage code
├── tests/ # pytest test suite
├── docker-compose.yml # Docker production setup
├── pyproject.toml # Project configuration
├── VERSIONING.md # Versioning strategy documentation
├── CHANGELOG.md # Version history
├── .bumpversion.cfg # Version bumping configuration
└── README.md # Project documentation
Versioning
Tribal follows Semantic Versioning. See VERSIONING.md for complete details about:
- Version numbering (MAJOR.MINOR.PATCH)
- Schema versioning for database compatibility
- Branch naming conventions
- Release and hotfix procedures
Check the version with:
# Display version information
tribal version
Managing Dependencies
# Add a dependency
uv pip add <package-name>
# Add a development dependency
uv pip add <package-name>
# Update dependencies
uv pip sync requirements.txt requirements-dev.txt
Deployment
Docker Deployment
# Build and start containers
docker-compose up -d --build
# View logs
docker-compose logs -f
# Stop containers
docker-compose down
# With custom environment variables
API_PORT=8080 MCP_PORT=5000 REQUIRE_AUTH=true API_KEY=your-secret-key docker-start
Claude for Desktop Integration
Option 1: Let Claude for Desktop Launch the Server
-
Open
~/Library/Application Support/Claude/claude_desktop_config.json
-
Add the MCP server configuration (assumes Tribal tool is already installed):
{ "mcpServers": [ { "name": "tribal", "launchCommand": "tribal" } ] }
-
Restart Claude for Desktop
Option 2: Connect to Running Docker Container
-
Start the container:
cd /path/to/tribal docker-start
-
Configure Claude for Desktop:
{ "mcpServers": [ { "name": "tribal", "url": "http://localhost:5000" } ] }
Claude Code CLI Integration
# For Docker container
claude mcp add tribal http://localhost:5000
# For directly launched server
claude mcp add tribal --launch "tribal"
# Test the connection
claude mcp list
claude mcp test tribal
Troubleshooting
- Verify Tribal installation:
which tribal
- Check configuration:
claude mcp list
- Test server status:
tribal status
- Look for error messages in the Claude output
- Check the database directory exists and has proper permissions
Cloud Deployment
The project includes placeholder implementations for AWS services:
S3Storage
: For storing error records in Amazon S3DynamoDBStorage
: For using DynamoDB as the database