Redmine MCP Server
by zacharyelston
A Model Context Protocol (MCP) server that enables AI assistants to interact with Redmine for focused and transparent project management. It provides a bridge between AI assistants and Redmine, allowing the AI to create and update issues, manage wiki pages, and track project status.
Last updated: N/A
Redmine MCP Server
A Model Context Protocol (MCP) server that enables AI assistants to interact with Redmine for focused and transparent project management.
Overview
This MCP server provides a bridge between AI assistants and Redmine, allowing the AI to:
- Create and update issues with proper categorization
- Manage wiki pages and documentation
- Track project status and progress
- Follow defined processes for consistency
By using this MCP server, you can ensure that AI work remains focused, well-documented, and fully transparent to human team members.
Features
Resource Capabilities
- Issues: Access to Redmine issues with filtering and search
- Projects: Access to project data, categories, and statuses
- Wiki: Access to wiki pages for documentation
Tool Capabilities
- create_issue: Create new issues with proper categorization
- update_issue: Update existing issues with status changes and notes
- create_wiki: Create or update wiki pages for documentation
- get_project_status: Get project status summaries and statistics
Prompt Capabilities
- issue_template: Template for creating well-structured issues
- wiki_template: Template for creating well-structured wiki pages
Requirements
- Python 3.9+
- Flask
- Redmine instance with API access
- Claude Desktop or other MCP-compatible AI assistant
Installation
-
Clone the repository:
git clone https://github.com/yourusername/redmine-mcp-server.git cd redmine-mcp-server
-
Install dependencies:
pip install -r requirements.txt
-
Configure the server:
cp config.yaml.example config.yaml # Edit config.yaml with your Redmine URL and API key
Usage
Running the server
Start the server with:
python main.py
The server runs on port 5000 by default.
Docker deployment
Build and run the Docker container:
docker build -t redmine-mcp-server .
docker run -d -p 5000:5000 -e REDMINE_API_KEY=your_api_key -e REDMINE_URL=http://localhost:3000 redmine-mcp-server
Configuring Claude Desktop
Add the following to your Claude Desktop MCP configuration:
{
"mcps": {
"redmine": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"REDMINE_API_KEY",
"-e",
"REDMINE_URL",
"redmine-mcp-server:latest"
],
"environment": {
"REDMINE_API_KEY": "your_redmine_api_key",
"REDMINE_URL": "http://localhost:3000"
}
}
}
}
API Reference
MCP Endpoints
GET /mcp
: Returns MCP capabilitiesGET /mcp/health
: Returns health status
Resource Endpoints
GET /mcp/resources/issues
: Returns issues as resourcesGET /mcp/resources/projects
: Returns project dataGET /mcp/resources/wiki
: Returns wiki pages
Tool Endpoints
POST /mcp/tools/create_issue
: Creates a new issuePOST /mcp/tools/update_issue
: Updates an existing issuePOST /mcp/tools/create_wiki
: Creates or updates a wiki pagePOST /mcp/tools/get_project_status
: Gets project status and statistics
Prompt Endpoints
GET /mcp/prompts/issue_template
: Returns template for creating issuesGET /mcp/prompts/wiki_template
: Returns template for creating wiki pages
Configuration Options
The server can be configured using a config.yaml
file or environment variables:
| Option | Environment Variable | Description | Default | |--------|----------------------|-------------|---------| | redmine_url | REDMINE_URL | URL of the Redmine instance | http://localhost:3000 | | redmine_api_key | REDMINE_API_KEY | API key for Redmine authentication | None | | server_port | SERVER_PORT | Port for the MCP server | 5000 | | log_level | LOG_LEVEL | Logging level (INFO, DEBUG, etc.) | INFO | | project_id | PROJECT_ID | Default Redmine project ID | 1 | | default_category_id | DEFAULT_CATEGORY_ID | Default category ID for issues | 3 | | default_tracker_id | DEFAULT_TRACKER_ID | Default tracker ID for issues | 2 |
Process Benefits
Using this MCP server provides several benefits for AI-assisted project management:
- Structured Documentation: All AI work is automatically documented in Redmine
- Clear Processes: AI tasks follow predefined workflows and categories
- Transparency: All AI actions are logged and traceable
- Collaboration: Human team members can easily review and contribute to AI work
- Progress Tracking: Project managers can track AI task progress through Redmine
License
MIT License
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.