YaraFlux MCP Server
by ThreatFlux
YaraFlux MCP Server enables AI assistants to perform YARA rule-based threat analysis through the standardized Model Context Protocol interface. The server integrates YARA scanning with modern AI assistants, supporting comprehensive rule management, secure scanning, and detailed result analysis through a modular architecture.
Last updated: N/A
YaraFlux MCP Server
GitHub release (latest by date) CI codecov Codacy Badge License: MIT Python Version FastAPI MCP Code style: black
A Model Context Protocol (MCP) server for YARA scanning, providing LLMs with capabilities to analyze files with YARA rules.
๐ Overview
YaraFlux MCP Server enables AI assistants to perform YARA rule-based threat analysis through the standardized Model Context Protocol interface. The server integrates YARA scanning with modern AI assistants, supporting comprehensive rule management, secure scanning, and detailed result analysis through a modular architecture.
๐งฉ Architecture Overview
+------------------------------------------+
| AI Assistant |
+--------------------+---------------------+
|
| Model Context Protocol
|
+--------------------v---------------------+
| YaraFlux MCP Server |
| |
| +----------------+ +---------------+ |
| | MCP Server | | Tool Registry | |
| +-------+--------+ +-------+-------+ |
| | | |
| +-------v--------+ +-------v-------+ |
| | YARA Service | | Storage Layer | |
| +----------------+ +---------------+ |
| |
+------------------------------------------+
| |
+-----------------+ +---------------+
| YARA Engine | | Storage |
| - Rule Compiling| | - Local FS |
| - File Scanning | | - MinIO/S3 |
+-----------------+ +---------------+
YaraFlux follows a modular architecture that separates concerns between:
- MCP Integration Layer: Handles communication with AI assistants
- Tool Implementation Layer: Implements YARA scanning and management functionality
- Storage Abstraction Layer: Provides flexible storage options
- YARA Engine Integration: Leverages YARA for scanning and rule management
For detailed architecture diagrams, see the Architecture Documentation.
โจ Features
-
๐ Modular Architecture
- Clean separation of MCP integration, tool implementation, and storage
- Standardized parameter parsing and error handling
- Flexible storage backend with local and S3/MinIO options
-
๐ค MCP Integration
- 19 integrated MCP tools for comprehensive functionality
- Optimized for Claude Desktop integration
- Direct file analysis from within conversations
- Compatible with latest MCP protocol specification
-
๐ YARA Scanning
- URL and file content scanning
- Detailed match information with context
- Scan result storage and retrieval
- Performance-optimized scanning engine
-
๐ Rule Management
- Create, read, update, delete YARA rules
- Rule validation with detailed error reporting
- Import rules from ThreatFlux repository
- Categorization by source (custom vs. community)
-
๐ File Analysis
- Hexadecimal view for binary analysis
- String extraction with configurable parameters
- File metadata and hash information
- Secure file upload and storage
-
๐ Security Features
- JWT authentication for API access
- Non-root container execution
- Secure storage isolation
- Configurable access controls
๐ Quick Start
Using Docker Image
# Pull the latest Docker image
docker pull threatflux/yaraflux-mcp-server:latest
# Run the container
docker run -p 8000:8000 \
-e JWT_SECRET_KEY=your-secret-key \
-e ADMIN_PASSWORD=your-admin-password \
-e DEBUG=true \
threatflux/yaraflux-mcp-server:latest
### Using Docker building from source
```bash
# Clone the repository
git clone https://github.com/ThreatFlux/YaraFlux.git
cd YaraFlux/
# Build the Docker image
docker build -t yaraflux-mcp-server:latest .
# Run the container
docker run -p 8000:8000 \
-e JWT_SECRET_KEY=your-secret-key \
-e ADMIN_PASSWORD=your-admin-password \
-e DEBUG=true \
yaraflux-mcp-server:latest
Installation from Source
# Clone the repository
git clone https://github.com/ThreatFlux/YaraFlux.git
cd YaraFlux/
# Install dependencies (requires Python 3.13+)
make install
# Run the server
make run
๐งฉ Claude Desktop Integration
YaraFlux is designed for seamless integration with Claude Desktop through the Model Context Protocol.
- Build the Docker image:
docker build -t yaraflux-mcp-server:latest .
- Add to Claude Desktop config (
~/Library/Application Support/Claude/claude_desktop_config.json
):
{
"mcpServers": {
"yaraflux-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"--env",
"JWT_SECRET_KEY=your-secret-key",
"--env",
"ADMIN_PASSWORD=your-admin-password",
"--env",
"DEBUG=true",
"--env",
"PYTHONUNBUFFERED=1",
"threatflux/yaraflux-mcp-server:latest"
],
"disabled": false,
"autoApprove": [
"scan_url",
"scan_data",
"list_yara_rules",
"get_yara_rule"
]
}
}
}
- Restart Claude Desktop to activate the server.
๐ ๏ธ Available MCP Tools
YaraFlux exposes 19 integrated MCP tools:
Rule Management Tools
- list_yara_rules: List available YARA rules with filtering options
- get_yara_rule: Get a specific YARA rule's content and metadata
- validate_yara_rule: Validate YARA rule syntax with detailed error reporting
- add_yara_rule: Create a new YARA rule
- update_yara_rule: Update an existing YARA rule
- delete_yara_rule: Delete a YARA rule
- import_threatflux_rules: Import rules from ThreatFlux GitHub repository
Scanning Tools
- scan_url: Scan content from a URL with specified YARA rules
- scan_data: Scan provided data (base64 encoded) with specified rules
- get_scan_result: Retrieve detailed results from a previous scan
File Management Tools
- upload_file: Upload a file for analysis or scanning
- get_file_info: Get metadata about an uploaded file
- list_files: List uploaded files with pagination and sorting
- delete_file: Delete an uploaded file
- extract_strings: Extract ASCII/Unicode strings from a file
- get_hex_view: Get hexadecimal view of file content
- download_file: Download an uploaded file
Storage Management Tools
- get_storage_info: Get storage usage statistics
- clean_storage: Remove old files to free up storage space
๐ Documentation
Comprehensive documentation is available in the docs/ directory:
- Architecture Diagrams - Visual representation of system architecture
- Code Analysis - Detailed code structure and recommendations
- Installation Guide - Detailed setup instructions
- CLI Usage Guide - Command-line interface documentation
- API Reference - REST API endpoints and usage
- YARA Rules Guide - Creating and managing YARA rules
- MCP Integration - Model Context Protocol integration details
- File Management - File handling capabilities
- Examples - Real-world usage examples
๐๏ธ Project Structure
yaraflux_mcp_server/
โโโ src/
โ โโโ yaraflux_mcp_server/
โ โโโ app.py # FastAPI application
โ โโโ auth.py # JWT authentication and user management
โ โโโ config.py # Configuration settings loader
โ โโโ models.py # Pydantic models for requests/responses
โ โโโ mcp_server.py # MCP server implementation
โ โโโ utils/ # Utility functions package
โ โ โโโ __init__.py # Package initialization
โ โ โโโ error_handling.py # Standardized error handling
โ โ โโโ param_parsing.py # Parameter parsing utilities
โ โ โโโ wrapper_generator.py # Tool wrapper generation
โ โโโ mcp_tools/ # Modular MCP tools package
โ โ โโโ __init__.py # Package initialization
โ โ โโโ base.py # Base tool registration utilities
โ โ โโโ file_tools.py # File management tools
โ โ โโโ rule_tools.py # YARA rule management tools
โ โ โโโ scan_tools.py # Scanning tools
โ โ โโโ storage_tools.py # Storage management tools
โ โโโ storage/ # Storage implementation package
โ โ โโโ __init__.py # Package initialization
โ โ โโโ base.py # Base storage interface
โ โ โโโ factory.py # Storage client factory
โ โ โโโ local.py # Local filesystem storage
โ โ โโโ minio.py # MinIO/S3 storage
โ โโโ routers/ # API route definitions
โ โ โโโ __init__.py # Package initialization
โ โ โโโ auth.py # Authentication API routes
โ โ โโโ files.py # File management API routes
โ โ โโโ rules.py # YARA rule management API routes
โ โ โโโ scan.py # YARA scanning API routes
โ โโโ yara_service.py # YARA rule management and scanning
โ โโโ __init__.py # Package initialization
โ โโโ __main__.py # CLI entry point
โโโ docs/ # Documentation
โโโ tests/ # Test suite
โโโ Dockerfile # Docker configuration
โโโ entrypoint.sh # Container entrypoint script
โโโ Makefile # Build automation
โโโ pyproject.toml # Project metadata and dependencies
โโโ requirements.txt # Core dependencies
โโโ requirements-dev.txt # Development dependencies
๐งช Development
Local Development
# Set up development environment
make dev-setup
# Run tests
make test
# Code quality checks
make lint
make format
make security-check
# Generate test coverage report
make coverage
# Run development server
make run
CI/CD Workflows
This project uses GitHub Actions for continuous integration and deployment:
-
CI Tests: Runs on every push and pull request to main and develop branches
- Runs tests, formatting, linting, and type checking
- Builds and tests Docker images
- Uploads test coverage reports to Codecov
-
Version Auto-increment: Automatically increments version on pushes to main branch
- Updates version in pyproject.toml, setup.py, and Dockerfile
- Creates git tag for new version
-
Publish Release: Triggered after successful version auto-increment
- Builds Docker images for multiple stages
- Generates release notes from git commits
- Creates GitHub release with artifacts
- Publishes Docker images to Docker Hub
These workflows ensure code quality and automate the release process.
Status Checks
The following status checks run on pull requests:
- โ Format Verification: Ensures code follows Black and isort formatting standards
- โ Lint Verification: Validates code quality and compliance with coding standards
- โ Test Execution: Runs the full test suite to verify functionality
- โ Coverage Report: Ensures sufficient test coverage of the codebase
๐ API Documentation
Interactive API documentation available at:
- Swagger UI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
For detailed API documentation, see API Reference.
๐ค Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
๐ License
This project is licensed under the MIT License - see the LICENSE file for details.