MLflow Prompt Registry MCP Server
by MCP-Mirror
This server implements the Model Context Protocol (MCP) Prompts specification for discovering and using prompt templates from MLflow Prompt Registry. It enables loading prompt templates from MLflow in Claude Desktop.
Last updated: N/A
MLflow Prompt Registry MCP Server
Model Context Protocol (MCP) Server for MLflow Prompt Registry, enabling access to prompt templates managed in MLflow.
This server implements the MCP Prompts specification for discovering and using prompt templates from MLflow Prompt Registry. The primary use case is to load prompt templates from MLflow in Claude Desktop, allowing users to instruct Claude conveniently for repetitive tasks or common workflows.

Tools
list-prompts
- List available prompts
- Inputs:
cursor
(optional string): Cursor for paginationfilter
(optional string): Filter for prompts
- Returns: List of prompt objects
get-prompt
- Retrieve and compile a specific prompt
- Inputs:
name
(string): Name of the prompt to retrievearguments
(optional object): JSON object with prompt variables
- Returns: Compiled prompt object
Setup
1: Install MLflow and Start Prompt Registry
Install and start an MLflow server if you haven't already to host the Prompt Registry:
pip install mlflow>=2.21.1
mlflow server --port 5000
2: Create a prompt template in MLflow
If you haven't already, create a prompt template in MLflow following this guide.
3: Build MCP Server
npm install
npm run build
4: Add the server to Claude Desktop
Configure Claude for Desktop by editing claude_desktop_config.json
:
{
"mcpServers": {
"mlflow": {
"command": "node",
"args": ["<absolute-path-to-this-repository>/dist/index.js"],
"env": {
"MLFLOW_TRACKING_URI": "http://localhost:5000"
}
}
}
}
Make sure to replace the MLFLOW_TRACKING_URI
with your actual MLflow server address.